Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[82]:
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import tensorflow_datasets as tfds
|
9 |
+
import tensorflow as tf
|
10 |
+
import tensorflow_hub as hub
|
11 |
+
import sklearn
|
12 |
+
import random
|
13 |
+
from glob import glob
|
14 |
+
import matplotlib.pyplot as plt
|
15 |
+
import requests
|
16 |
+
|
17 |
+
|
18 |
+
# In[83]:
|
19 |
+
|
20 |
+
|
21 |
+
print("TF version:", tf.__version__)
|
22 |
+
print("Hub version:", hub.__version__)
|
23 |
+
print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE")
|
24 |
+
|
25 |
+
|
26 |
+
# In[94]:
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
inception_net = tf.keras.applications.EfficientNetB7()
|
31 |
+
|
32 |
+
|
33 |
+
# In[100]:
|
34 |
+
|
35 |
+
|
36 |
+
import requests
|
37 |
+
|
38 |
+
response = requests.get("https://git.io/JJkYN")
|
39 |
+
labels = response.text.split("\n")
|
40 |
+
|
41 |
+
def classify_image(inp):
|
42 |
+
inp = inp.reshape((-1, 600, 600, 3))
|
43 |
+
inp = tf.keras.applications.efficientnet_v2.preprocess_input(inp)
|
44 |
+
prediction = inception_net.predict(inp).flatten()
|
45 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
46 |
+
return confidences
|
47 |
+
|
48 |
+
|
49 |
+
# In[107]:
|
50 |
+
|
51 |
+
|
52 |
+
import gradio as gr
|
53 |
+
title = "Classifier"
|
54 |
+
Description = "Model,used :- Efficient Net B7,fine tuned on dataset 'https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals'"
|
55 |
+
|
56 |
+
gr.Interface(fn=classify_image,
|
57 |
+
title = title,
|
58 |
+
description = Description,
|
59 |
+
|
60 |
+
inputs=gr.Image(shape=(600, 600)),
|
61 |
+
outputs=gr.Label(num_top_classes=3),
|
62 |
+
examples=["data/animals/animals/antelope/0a37838e99.jpg", "data/animals/animals/starfish/0a63e965c2.jpg"]).launch(share=True)
|
63 |
+
|