VinitT's picture
Update app.py
b63e96a verified
raw
history blame
3.34 kB
import streamlit as st
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import cv2
import tempfile
def load_model_and_processor():
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return processor, model, device
def process_image(uploaded_file):
image = Image.open(uploaded_file)
image = image.resize((512, 512))
return image
def process_video(uploaded_file):
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
cap = cv2.VideoCapture(tfile.name)
ret, frame = cap.read()
cap.release()
if not ret:
return None
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
image = image.resize((512, 512))
return image
def generate_description(processor, model, device, image, user_question):
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": user_question},
],
}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
inputs = inputs.to(device)
generated_ids = model.generate(**inputs, max_new_tokens=512)
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
return output_text[0]
def main():
st.title("Media Description Generator")
processor, model, device = load_model_and_processor()
uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True)
if uploaded_files:
user_question = st.text_input("Ask a question about the images or videos:")
if user_question:
for uploaded_file in uploaded_files:
file_type = uploaded_file.type.split('/')[0]
if file_type == 'image':
image = process_image(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("Generating description...")
elif file_type == 'video':
image = process_video(uploaded_file)
if image is None:
st.error("Failed to read the video file.")
continue
st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True)
st.write("Generating description...")
else:
st.error("Unsupported file type.")
continue
description = generate_description(processor, model, device, image, user_question)
st.write("Description:")
st.write(description)
if __name__ == "__main__":
main()