Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
# from PIL import Image | |
# import torch | |
# import cv2 | |
# import tempfile | |
# def load_model_and_processor(): | |
# processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
# model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# model.to(device) | |
# return processor, model, device | |
# def process_image(uploaded_file): | |
# image = Image.open(uploaded_file) | |
# image = image.resize((512, 512)) | |
# return image | |
# def process_video(uploaded_file): | |
# tfile = tempfile.NamedTemporaryFile(delete=False) | |
# tfile.write(uploaded_file.read()) | |
# cap = cv2.VideoCapture(tfile.name) | |
# ret, frame = cap.read() | |
# cap.release() | |
# if not ret: | |
# return None | |
# image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
# image = image.resize((512, 512)) | |
# return image | |
# def generate_description(processor, model, device, image, user_question): | |
# messages = [ | |
# { | |
# "role": "user", | |
# "content": [ | |
# { | |
# "type": "image", | |
# "image": image, | |
# }, | |
# {"type": "text", "text": user_question}, | |
# ], | |
# } | |
# ] | |
# text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt") | |
# inputs = inputs.to(device) | |
# generated_ids = model.generate(**inputs, max_new_tokens=512) | |
# generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
# output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
# return output_text[0] | |
# def main(): | |
# st.title("Media Description Generator") | |
# processor, model, device = load_model_and_processor() | |
# uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True) | |
# if uploaded_files: | |
# user_question = st.text_input("Ask a question about the images or videos:") | |
# if user_question: | |
# for uploaded_file in uploaded_files: | |
# file_type = uploaded_file.type.split('/')[0] | |
# if file_type == 'image': | |
# image = process_image(uploaded_file) | |
# st.image(image, caption='Uploaded Image.', use_column_width=True) | |
# st.write("Generating description...") | |
# elif file_type == 'video': | |
# image = process_video(uploaded_file) | |
# if image is None: | |
# st.error("Failed to read the video file.") | |
# continue | |
# st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True) | |
# st.write("Generating description...") | |
# else: | |
# st.error("Unsupported file type.") | |
# continue | |
# description = generate_description(processor, model, device, image, user_question) | |
# st.write("Description:") | |
# st.write(description) | |
# if __name__ == "__main__": | |
# main() | |
import streamlit as st | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from PIL import Image | |
import torch | |
import cv2 | |
import tempfile | |
def load_model_and_processor(): | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
return processor, model, device | |
def process_image(uploaded_file): | |
image = Image.open(uploaded_file) | |
image = image.resize((512, 512)) | |
return image | |
def process_video(uploaded_file): | |
tfile = tempfile.NamedTemporaryFile(delete=False) | |
tfile.write(uploaded_file.read()) | |
cap = cv2.VideoCapture(tfile.name) | |
ret, frame = cap.read() | |
cap.release() | |
if not ret: | |
return None | |
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
image = image.resize((512, 512)) | |
return image | |
def generate_description(processor, model, device, image, user_question): | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": user_question}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt") | |
inputs = inputs.to(device) | |
generated_ids = model.generate(**inputs, max_new_tokens=512) | |
generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)] | |
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False) | |
return output_text[0] | |
def main(): | |
st.title("Media Description Generator") | |
processor, model, device = load_model_and_processor() | |
uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True) | |
if uploaded_files: | |
user_question = st.text_input("Ask a question about the images or videos:") | |
if user_question: | |
generate_button = st.button("Generate Descriptions") | |
if generate_button: | |
for uploaded_file in uploaded_files: | |
file_type = uploaded_file.type.split('/')[0] | |
if file_type == 'image': | |
image = process_image(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("Generating description...") | |
elif file_type == 'video': | |
image = process_video(uploaded_file) | |
if image is None: | |
st.error("Failed to read the video file.") | |
continue | |
st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True) | |
st.write("Generating description...") | |
else: | |
st.error("Unsupported file type.") | |
continue | |
description = generate_description(processor, model, device, image, user_question) | |
st.write("Description:") | |
st.write(description) | |
if __name__ == "__main__": | |
main() |