Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from PIL import Image | |
import torch | |
import cv2 | |
import tempfile | |
from langchain import LLMChain, PromptTemplate | |
from langchain_community.llms import Ollama | |
from langchain_core.output_parsers import StrOutputParser | |
# Load the processor and model directly | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
# Check if CUDA is available and set the device accordingly | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
# Streamlit app | |
st.title("Media Description Generator") | |
uploaded_files = st.file_uploader("Choose images or videos...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"], accept_multiple_files=True) | |
if uploaded_files: | |
user_question = st.text_input("Ask a question about the images or videos:") | |
if user_question: | |
all_output_texts = [] # Initialize an empty list to store all output texts | |
for uploaded_file in uploaded_files: | |
file_type = uploaded_file.type.split('/')[0] | |
if file_type == 'image': | |
# Open the image | |
image = Image.open(uploaded_file) | |
# Resize image to reduce memory usage | |
image = image.resize((512, 512)) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("Generating description...") | |
elif file_type == 'video': | |
# Save the uploaded video to a temporary file | |
tfile = tempfile.NamedTemporaryFile(delete=False) | |
tfile.write(uploaded_file.read()) | |
# Open the video file | |
cap = cv2.VideoCapture(tfile.name) | |
# Extract the first frame | |
ret, frame = cap.read() | |
if not ret: | |
st.error("Failed to read the video file.") | |
continue | |
else: | |
# Convert the frame to an image | |
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
# Resize image to reduce memory usage | |
image = image.resize((512, 512)) | |
st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True) | |
st.write("Generating description...") | |
# Release the video capture object | |
cap.release() | |
else: | |
st.error("Unsupported file type.") | |
continue | |
# Ensure the image is loaded correctly | |
if image is None: | |
st.error("Failed to load the image.") | |
continue | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": user_question}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Pass the image to the processor | |
inputs = processor( | |
text=[text], | |
images=[image], | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to(device) # Ensure inputs are on the same device as the model | |
# Inference: Generation of the output | |
try: | |
generated_ids = model.generate(**inputs, max_new_tokens=512) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
st.write("Description:") | |
st.write(output_text[0]) | |
# Append the output text to the list | |
all_output_texts.append(output_text[0]) | |
except Exception as e: | |
st.error(f"Error during generation: {e}") | |
continue | |
# Clear memory after processing each file | |
del image, inputs, generated_ids, generated_ids_trimmed, output_text | |
torch.cuda.empty_cache() | |
torch.manual_seed(0) # Reset the seed to ensure reproducibility | |
# Combine all descriptions into a single text | |
combined_text = " ".join(all_output_texts) | |
# Create a custom prompt | |
custom_prompt = f"Based on the following descriptions, create a short story:\n\n{combined_text}\n\nStory:" | |
# Define the prompt template for LangChain | |
prompt_template = PromptTemplate( | |
input_variables=["descriptions"], | |
template="Based on the following descriptions, create a short story:\n\n{descriptions}\n\nStory:" | |
) | |
# Create the LLMChain with the Ollama model | |
ollama_llm = Ollama(model="llama3.1") | |
output_parser = StrOutputParser() | |
chain = LLMChain( | |
llm=ollama_llm, | |
prompt=prompt_template, | |
output_parser=output_parser | |
) | |
# Generate the story using LangChain | |
story = chain.run({"descriptions": combined_text}) | |
# Display the generated story | |
st.write("Generated Story:") | |
st.write(story) |