VinitT's picture
Create app.py
fd19cdd verified
raw
history blame
1.73 kB
import streamlit as st
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
# Load the processor and model directly
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
# Streamlit app
st.title("Image Description Generator")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Open the image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("Generating description...")
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": "Describe this image."},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Pass the image to the processor
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cpu")
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
st.write("Description:")
st.write(output_text[0])