Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from PIL import Image | |
import torch | |
# Load the processor and model directly | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct") | |
# Streamlit app | |
st.title("Image Description Generator") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Open the image | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image.', use_column_width=True) | |
st.write("Generating description...") | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{ | |
"type": "image", | |
"image": image, | |
}, | |
{"type": "text", "text": "Describe this image."}, | |
], | |
} | |
] | |
# Preparation for inference | |
text = processor.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Pass the image to the processor | |
inputs = processor( | |
text=[text], | |
images=[image], | |
padding=True, | |
return_tensors="pt", | |
) | |
inputs = inputs.to("cpu") | |
# Inference: Generation of the output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
) | |
st.write("Description:") | |
st.write(output_text[0]) |