Spaces:
Sleeping
Sleeping
# src/model.py | |
import torch | |
import torch.nn as nn | |
class NCFModel(nn.Module): | |
def __init__(self, num_users, num_items, embedding_size=50): | |
""" | |
Initialize the NCF model with embedding layers and fully connected layers. | |
Args: | |
num_users (int): Total number of unique users. | |
num_items (int): Total number of unique items. | |
embedding_size (int): Size of the embedding vectors. | |
""" | |
super(NCFModel, self).__init__() | |
self.user_embedding = nn.Embedding(num_users, embedding_size) | |
self.item_embedding = nn.Embedding(num_items, embedding_size) | |
self.fc1 = nn.Linear(embedding_size * 2, 128) | |
self.dropout1 = nn.Dropout(0.5) | |
self.fc2 = nn.Linear(128, 64) | |
self.dropout2 = nn.Dropout(0.5) | |
self.output_layer = nn.Linear(64, 1) | |
def forward(self, user, item): | |
""" | |
Forward pass through the model. | |
Args: | |
user (torch.LongTensor): Tensor of user IDs. | |
item (torch.LongTensor): Tensor of item IDs. | |
Returns: | |
torch.Tensor: Output logits indicating interaction likelihood. | |
""" | |
user_emb = self.user_embedding(user) | |
item_emb = self.item_embedding(item) | |
x = torch.cat([user_emb, item_emb], dim=1) | |
x = torch.relu(self.fc1(x)) | |
x = self.dropout1(x) | |
x = torch.relu(self.fc2(x)) | |
x = self.dropout2(x) | |
x = self.output_layer(x) # No sigmoid here; handled in loss function | |
return x.squeeze() | |