File size: 3,368 Bytes
c709b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/detic/custom_solver.py
import itertools
from typing import Any, Callable, Dict, Iterable, List, Set, Type, Union
import torch

from detectron2.config import CfgNode

from detectron2.solver.build import maybe_add_gradient_clipping


def build_custom_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer:
    params: List[Dict[str, Any]] = []
    memo: Set[torch.nn.parameter.Parameter] = set()
    optimizer_type = cfg.SOLVER.OPTIMIZER

    for key, value in model.named_parameters(recurse=True):
        if not value.requires_grad:
            continue
        # Avoid duplicating parameters
        if value in memo:
            continue
        memo.add(value)
        lr = cfg.SOLVER.BASE_LR
        weight_decay = cfg.SOLVER.WEIGHT_DECAY

        if cfg.SOLVER.VIT_LAYER_DECAY:
            lr = lr * get_vit_lr_decay_rate(key, cfg.SOLVER.VIT_LAYER_DECAY_RATE, cfg.MODEL.VIT_LAYERS)

        param = {"params": [value], "lr": lr}
        if optimizer_type != 'ADAMW':
            param['weight_decay'] = weight_decay
        params += [param]

    def maybe_add_full_model_gradient_clipping(optim):  # optim: the optimizer class
        # detectron2 doesn't have full model gradient clipping now
        clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
        enable = (
            cfg.SOLVER.CLIP_GRADIENTS.ENABLED
            and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
            and clip_norm_val > 0.0
        )

        class FullModelGradientClippingOptimizer(optim):
            def step(self, closure=None):
                all_params = itertools.chain(*[x["params"] for x in self.param_groups])
                torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
                super().step(closure=closure)

        return FullModelGradientClippingOptimizer if enable else optim

    
    if optimizer_type == 'SGD':
        optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
            params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, 
            nesterov=cfg.SOLVER.NESTEROV
        )
    elif optimizer_type == 'ADAMW':
        optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
            params, cfg.SOLVER.BASE_LR, 
            weight_decay=cfg.SOLVER.WEIGHT_DECAY
        )
    else:
        raise NotImplementedError(f"no optimizer type {optimizer_type}")
    if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
        optimizer = maybe_add_gradient_clipping(cfg, optimizer)
    return optimizer


def get_vit_lr_decay_rate(name, lr_decay_rate=1.0, num_layers=12):
    """
    Calculate lr decay rate for different ViT blocks.
    Args:
        name (string): parameter name.
        lr_decay_rate (float): base lr decay rate.
        num_layers (int): number of ViT blocks.

    Returns:
        lr decay rate for the given parameter.
    """
    layer_id = num_layers + 1
    if name.startswith("backbone"):
        if ".pos_embed" in name or ".patch_embed" in name:
            layer_id = 0
        elif ".blocks." in name and ".residual." not in name:
            layer_id = int(name[name.find(".blocks.") :].split(".")[2]) + 1

    return lr_decay_rate ** (num_layers + 1 - layer_id)