File size: 15,138 Bytes
3fad000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.

import argparse
import gc
import logging
import sys
import time
from typing import List, Optional

from cuml.linear_model import LogisticRegression
import torch
import torch.backends.cudnn as cudnn
import torch.distributed
from torch import nn
from torch.utils.data import TensorDataset
from torchmetrics import MetricTracker

from dinov2.data import make_dataset
from dinov2.data.transforms import make_classification_eval_transform
from dinov2.distributed import get_global_rank, get_global_size
from dinov2.eval.metrics import MetricType, build_metric
from dinov2.eval.setup import get_args_parser as get_setup_args_parser
from dinov2.eval.setup import setup_and_build_model
from dinov2.eval.utils import evaluate, extract_features
from dinov2.utils.dtype import as_torch_dtype


logger = logging.getLogger("dinov2")

DEFAULT_MAX_ITER = 1_000
C_POWER_RANGE = torch.linspace(-6, 5, 45)
_CPU_DEVICE = torch.device("cpu")


def get_args_parser(
    description: Optional[str] = None,
    parents: Optional[List[argparse.ArgumentParser]] = None,
    add_help: bool = True,
):
    parents = parents or []
    setup_args_parser = get_setup_args_parser(parents=parents, add_help=False)
    parents = [setup_args_parser]
    parser = argparse.ArgumentParser(
        description=description,
        parents=parents,
        add_help=add_help,
    )
    parser.add_argument(
        "--train-dataset",
        dest="train_dataset_str",
        type=str,
        help="Training dataset",
    )
    parser.add_argument(
        "--val-dataset",
        dest="val_dataset_str",
        type=str,
        help="Validation dataset",
    )
    parser.add_argument(
        "--finetune-dataset-str",
        dest="finetune_dataset_str",
        type=str,
        help="Fine-tuning dataset",
    )
    parser.add_argument(
        "--finetune-on-val",
        action="store_true",
        help="If there is no finetune dataset, whether to choose the "
        "hyperparameters on the val set instead of 10%% of the train dataset",
    )
    parser.add_argument(
        "--metric-type",
        type=MetricType,
        choices=list(MetricType),
        help="Metric type",
    )
    parser.add_argument(
        "--train-features-device",
        type=str,
        help="Device to gather train features (cpu, cuda, cuda:0, etc.), default: %(default)s",
    )
    parser.add_argument(
        "--train-dtype",
        type=str,
        help="Data type to convert the train features to (default: %(default)s)",
    )
    parser.add_argument(
        "--max-train-iters",
        type=int,
        help="Maximum number of train iterations (default: %(default)s)",
    )
    parser.set_defaults(
        train_dataset_str="ImageNet:split=TRAIN",
        val_dataset_str="ImageNet:split=VAL",
        finetune_dataset_str=None,
        metric_type=MetricType.MEAN_ACCURACY,
        train_features_device="cpu",
        train_dtype="float64",
        max_train_iters=DEFAULT_MAX_ITER,
        finetune_on_val=False,
    )
    return parser


class LogRegModule(nn.Module):
    def __init__(
        self,
        C,
        max_iter=DEFAULT_MAX_ITER,
        dtype=torch.float64,
        device=_CPU_DEVICE,
    ):
        super().__init__()
        self.dtype = dtype
        self.device = device
        self.estimator = LogisticRegression(
            penalty="l2",
            C=C,
            max_iter=max_iter,
            output_type="numpy",
            tol=1e-12,
            linesearch_max_iter=50,
        )

    def forward(self, samples, targets):
        samples_device = samples.device
        samples = samples.to(dtype=self.dtype, device=self.device)
        if self.device == _CPU_DEVICE:
            samples = samples.numpy()
        probas = self.estimator.predict_proba(samples)
        return {"preds": torch.from_numpy(probas).to(samples_device), "target": targets}

    def fit(self, train_features, train_labels):
        train_features = train_features.to(dtype=self.dtype, device=self.device)
        train_labels = train_labels.to(dtype=self.dtype, device=self.device)
        if self.device == _CPU_DEVICE:
            # both cuML and sklearn only work with numpy arrays on CPU
            train_features = train_features.numpy()
            train_labels = train_labels.numpy()
        self.estimator.fit(train_features, train_labels)


def evaluate_model(*, logreg_model, logreg_metric, test_data_loader, device):
    postprocessors = {"metrics": logreg_model}
    metrics = {"metrics": logreg_metric}
    return evaluate(nn.Identity(), test_data_loader, postprocessors, metrics, device)


def train_for_C(*, C, max_iter, train_features, train_labels, dtype=torch.float64, device=_CPU_DEVICE):
    logreg_model = LogRegModule(C, max_iter=max_iter, dtype=dtype, device=device)
    logreg_model.fit(train_features, train_labels)
    return logreg_model


def train_and_evaluate(
    *,
    C,
    max_iter,
    train_features,
    train_labels,
    logreg_metric,
    test_data_loader,
    train_dtype=torch.float64,
    train_features_device,
    eval_device,
):
    logreg_model = train_for_C(
        C=C,
        max_iter=max_iter,
        train_features=train_features,
        train_labels=train_labels,
        dtype=train_dtype,
        device=train_features_device,
    )
    return evaluate_model(
        logreg_model=logreg_model,
        logreg_metric=logreg_metric,
        test_data_loader=test_data_loader,
        device=eval_device,
    )


def sweep_C_values(
    *,
    train_features,
    train_labels,
    test_data_loader,
    metric_type,
    num_classes,
    train_dtype=torch.float64,
    train_features_device=_CPU_DEVICE,
    max_train_iters=DEFAULT_MAX_ITER,
):
    if metric_type == MetricType.PER_CLASS_ACCURACY:
        # If we want to output per-class accuracy, we select the hyperparameters with mean per class
        metric_type = MetricType.MEAN_PER_CLASS_ACCURACY
    logreg_metric = build_metric(metric_type, num_classes=num_classes)
    metric_tracker = MetricTracker(logreg_metric, maximize=True)
    ALL_C = 10**C_POWER_RANGE
    logreg_models = {}

    train_features = train_features.to(dtype=train_dtype, device=train_features_device)
    train_labels = train_labels.to(device=train_features_device)

    for i in range(get_global_rank(), len(ALL_C), get_global_size()):
        C = ALL_C[i].item()
        logger.info(
            f"Training for C = {C:.5f}, dtype={train_dtype}, "
            f"features: {train_features.shape}, {train_features.dtype}, "
            f"labels: {train_labels.shape}, {train_labels.dtype}"
        )
        logreg_models[C] = train_for_C(
            C=C,
            max_iter=max_train_iters,
            train_features=train_features,
            train_labels=train_labels,
            dtype=train_dtype,
            device=train_features_device,
        )

    gather_list = [None for _ in range(get_global_size())]
    torch.distributed.all_gather_object(gather_list, logreg_models)

    logreg_models_gathered = {}
    for logreg_dict in gather_list:
        logreg_models_gathered.update(logreg_dict)

    for i in range(len(ALL_C)):
        metric_tracker.increment()
        C = ALL_C[i].item()
        evals = evaluate_model(
            logreg_model=logreg_models_gathered[C],
            logreg_metric=metric_tracker,
            test_data_loader=test_data_loader,
            device=torch.cuda.current_device(),
        )
        logger.info(f"Trained for C = {C:.5f}, accuracies = {evals}")

        best_stats, which_epoch = metric_tracker.best_metric(return_step=True)
        best_stats_100 = {k: 100.0 * v for k, v in best_stats.items()}
        if which_epoch["top-1"] == i:
            best_C = C
    logger.info(f"Sweep best {best_stats_100}, best C = {best_C:.6f}")

    return best_stats, best_C


def eval_log_regression(
    *,
    model,
    train_dataset,
    val_dataset,
    finetune_dataset,
    metric_type,
    batch_size,
    num_workers,
    finetune_on_val=False,
    train_dtype=torch.float64,
    train_features_device=_CPU_DEVICE,
    max_train_iters=DEFAULT_MAX_ITER,
):
    """
    Implements the "standard" process for log regression evaluation:
    The value of C is chosen by training on train_dataset and evaluating on
    finetune_dataset. Then, the final model is trained on a concatenation of
    train_dataset and finetune_dataset, and is evaluated on val_dataset.
    If there is no finetune_dataset, the value of C is the one that yields
    the best results on a random 10% subset of the train dataset
    """

    start = time.time()

    train_features, train_labels = extract_features(
        model, train_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
    )
    val_features, val_labels = extract_features(
        model, val_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
    )
    val_data_loader = torch.utils.data.DataLoader(
        TensorDataset(val_features, val_labels),
        batch_size=batch_size,
        drop_last=False,
        num_workers=0,
        persistent_workers=False,
    )

    if finetune_dataset is None and finetune_on_val:
        logger.info("Choosing hyperparameters on the val dataset")
        finetune_features, finetune_labels = val_features, val_labels
    elif finetune_dataset is None and not finetune_on_val:
        logger.info("Choosing hyperparameters on 10% of the train dataset")
        torch.manual_seed(0)
        indices = torch.randperm(len(train_features), device=train_features.device)
        finetune_index = indices[: len(train_features) // 10]
        train_index = indices[len(train_features) // 10 :]
        finetune_features, finetune_labels = train_features[finetune_index], train_labels[finetune_index]
        train_features, train_labels = train_features[train_index], train_labels[train_index]
    else:
        logger.info("Choosing hyperparameters on the finetune dataset")
        finetune_features, finetune_labels = extract_features(
            model, finetune_dataset, batch_size, num_workers, gather_on_cpu=(train_features_device == _CPU_DEVICE)
        )
    # release the model - free GPU memory
    del model
    gc.collect()
    torch.cuda.empty_cache()
    finetune_data_loader = torch.utils.data.DataLoader(
        TensorDataset(finetune_features, finetune_labels),
        batch_size=batch_size,
        drop_last=False,
    )

    if len(train_labels.shape) > 1:
        num_classes = train_labels.shape[1]
    else:
        num_classes = train_labels.max() + 1

    logger.info("Using cuML for logistic regression")

    best_stats, best_C = sweep_C_values(
        train_features=train_features,
        train_labels=train_labels,
        test_data_loader=finetune_data_loader,
        metric_type=metric_type,
        num_classes=num_classes,
        train_dtype=train_dtype,
        train_features_device=train_features_device,
        max_train_iters=max_train_iters,
    )

    if not finetune_on_val:
        logger.info("Best parameter found, concatenating features")
        train_features = torch.cat((train_features, finetune_features))
        train_labels = torch.cat((train_labels, finetune_labels))

    logger.info("Training final model")
    logreg_metric = build_metric(metric_type, num_classes=num_classes)
    evals = train_and_evaluate(
        C=best_C,
        max_iter=max_train_iters,
        train_features=train_features,
        train_labels=train_labels,
        logreg_metric=logreg_metric.clone(),
        test_data_loader=val_data_loader,
        eval_device=torch.cuda.current_device(),
        train_dtype=train_dtype,
        train_features_device=train_features_device,
    )

    best_stats = evals[1]["metrics"]

    best_stats["best_C"] = best_C

    logger.info(f"Log regression evaluation done in {int(time.time() - start)}s")
    return best_stats


def eval_log_regression_with_model(
    model,
    train_dataset_str="ImageNet:split=TRAIN",
    val_dataset_str="ImageNet:split=VAL",
    finetune_dataset_str=None,
    autocast_dtype=torch.float,
    finetune_on_val=False,
    metric_type=MetricType.MEAN_ACCURACY,
    train_dtype=torch.float64,
    train_features_device=_CPU_DEVICE,
    max_train_iters=DEFAULT_MAX_ITER,
):
    cudnn.benchmark = True

    transform = make_classification_eval_transform(resize_size=224)
    target_transform = None

    train_dataset = make_dataset(dataset_str=train_dataset_str, transform=transform, target_transform=target_transform)
    val_dataset = make_dataset(dataset_str=val_dataset_str, transform=transform, target_transform=target_transform)
    if finetune_dataset_str is not None:
        finetune_dataset = make_dataset(
            dataset_str=finetune_dataset_str, transform=transform, target_transform=target_transform
        )
    else:
        finetune_dataset = None

    with torch.cuda.amp.autocast(dtype=autocast_dtype):
        results_dict_logreg = eval_log_regression(
            model=model,
            train_dataset=train_dataset,
            val_dataset=val_dataset,
            finetune_dataset=finetune_dataset,
            metric_type=metric_type,
            batch_size=256,
            num_workers=0,  # 5,
            finetune_on_val=finetune_on_val,
            train_dtype=train_dtype,
            train_features_device=train_features_device,
            max_train_iters=max_train_iters,
        )

    results_dict = {
        "top-1": results_dict_logreg["top-1"].cpu().numpy() * 100.0,
        "top-5": results_dict_logreg.get("top-5", torch.tensor(0.0)).cpu().numpy() * 100.0,
        "best_C": results_dict_logreg["best_C"],
    }
    logger.info(
        "\n".join(
            [
                "Training of the supervised logistic regression on frozen features completed.\n"
                "Top-1 test accuracy: {acc:.1f}".format(acc=results_dict["top-1"]),
                "Top-5 test accuracy: {acc:.1f}".format(acc=results_dict["top-5"]),
                "obtained for C = {c:.6f}".format(c=results_dict["best_C"]),
            ]
        )
    )

    torch.distributed.barrier()
    return results_dict


def main(args):
    model, autocast_dtype = setup_and_build_model(args)
    eval_log_regression_with_model(
        model=model,
        train_dataset_str=args.train_dataset_str,
        val_dataset_str=args.val_dataset_str,
        finetune_dataset_str=args.finetune_dataset_str,
        autocast_dtype=autocast_dtype,
        finetune_on_val=args.finetune_on_val,
        metric_type=args.metric_type,
        train_dtype=as_torch_dtype(args.train_dtype),
        train_features_device=torch.device(args.train_features_device),
        max_train_iters=args.max_train_iters,
    )
    return 0


if __name__ == "__main__":
    description = "DINOv2 logistic regression evaluation"
    args_parser = get_args_parser(description=description)
    args = args_parser.parse_args()
    sys.exit(main(args))