Vishakaraj's picture
Upload folder using huggingface_hub
3fad000
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the Apache License, Version 2.0
# found in the LICENSE file in the root directory of this source tree.
import torch
import torch.nn as nn
from ...models.builder import LOSSES
@LOSSES.register_module()
class SigLoss(nn.Module):
"""SigLoss.
This follows `AdaBins <https://arxiv.org/abs/2011.14141>`_.
Args:
valid_mask (bool): Whether filter invalid gt (gt > 0). Default: True.
loss_weight (float): Weight of the loss. Default: 1.0.
max_depth (int): When filtering invalid gt, set a max threshold. Default: None.
warm_up (bool): A simple warm up stage to help convergence. Default: False.
warm_iter (int): The number of warm up stage. Default: 100.
"""
def __init__(
self, valid_mask=True, loss_weight=1.0, max_depth=None, warm_up=False, warm_iter=100, loss_name="sigloss"
):
super(SigLoss, self).__init__()
self.valid_mask = valid_mask
self.loss_weight = loss_weight
self.max_depth = max_depth
self.loss_name = loss_name
self.eps = 0.001 # avoid grad explode
# HACK: a hack implementation for warmup sigloss
self.warm_up = warm_up
self.warm_iter = warm_iter
self.warm_up_counter = 0
def sigloss(self, input, target):
if self.valid_mask:
valid_mask = target > 0
if self.max_depth is not None:
valid_mask = torch.logical_and(target > 0, target <= self.max_depth)
input = input[valid_mask]
target = target[valid_mask]
if self.warm_up:
if self.warm_up_counter < self.warm_iter:
g = torch.log(input + self.eps) - torch.log(target + self.eps)
g = 0.15 * torch.pow(torch.mean(g), 2)
self.warm_up_counter += 1
return torch.sqrt(g)
g = torch.log(input + self.eps) - torch.log(target + self.eps)
Dg = torch.var(g) + 0.15 * torch.pow(torch.mean(g), 2)
return torch.sqrt(Dg)
def forward(self, depth_pred, depth_gt):
"""Forward function."""
loss_depth = self.loss_weight * self.sigloss(depth_pred, depth_gt)
return loss_depth