Vishakaraj commited on
Commit
fa30ae0
Β·
1 Parent(s): 310a406

Upload folder using huggingface_hub

Browse files
Files changed (47) hide show
  1. LICENSE +201 -0
  2. README.md +368 -7
  3. app.py +155 -0
  4. demo.jpg +0 -0
  5. groundingdino/__init__.py +0 -0
  6. groundingdino/config/GroundingDINO_SwinB_cfg.py +43 -0
  7. groundingdino/config/GroundingDINO_SwinT_OGC.py +43 -0
  8. groundingdino/config/__init__.py +0 -0
  9. groundingdino/datasets/__init__.py +0 -0
  10. groundingdino/datasets/cocogrounding_eval.py +269 -0
  11. groundingdino/datasets/transforms.py +311 -0
  12. groundingdino/models/GroundingDINO/__init__.py +15 -0
  13. groundingdino/models/GroundingDINO/backbone/__init__.py +1 -0
  14. groundingdino/models/GroundingDINO/backbone/backbone.py +221 -0
  15. groundingdino/models/GroundingDINO/backbone/position_encoding.py +186 -0
  16. groundingdino/models/GroundingDINO/backbone/swin_transformer.py +802 -0
  17. groundingdino/models/GroundingDINO/bertwarper.py +273 -0
  18. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn.h +64 -0
  19. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.cpp +43 -0
  20. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.h +35 -0
  21. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.cu +156 -0
  22. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.h +33 -0
  23. groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh +1327 -0
  24. groundingdino/models/GroundingDINO/csrc/cuda_version.cu +7 -0
  25. groundingdino/models/GroundingDINO/csrc/vision.cpp +58 -0
  26. groundingdino/models/GroundingDINO/fuse_modules.py +297 -0
  27. groundingdino/models/GroundingDINO/groundingdino.py +412 -0
  28. groundingdino/models/GroundingDINO/ms_deform_attn.py +413 -0
  29. groundingdino/models/GroundingDINO/transformer.py +959 -0
  30. groundingdino/models/GroundingDINO/transformer_vanilla.py +123 -0
  31. groundingdino/models/GroundingDINO/utils.py +268 -0
  32. groundingdino/models/__init__.py +18 -0
  33. groundingdino/models/registry.py +66 -0
  34. groundingdino/util/__init__.py +1 -0
  35. groundingdino/util/box_ops.py +140 -0
  36. groundingdino/util/get_tokenlizer.py +29 -0
  37. groundingdino/util/inference.py +259 -0
  38. groundingdino/util/logger.py +93 -0
  39. groundingdino/util/misc.py +717 -0
  40. groundingdino/util/slconfig.py +427 -0
  41. groundingdino/util/slio.py +177 -0
  42. groundingdino/util/time_counter.py +62 -0
  43. groundingdino/util/utils.py +610 -0
  44. groundingdino/util/visualizer.py +318 -0
  45. groundingdino/util/vl_utils.py +100 -0
  46. requirements.txt +12 -0
  47. setup.py +208 -0
LICENSE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright 2023 - present, IDEA Research.
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,373 @@
1
  ---
2
  title: GroundingDino
3
- emoji: ⚑
4
- colorFrom: yellow
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.8.0
8
  app_file: app.py
9
- pinned: false
 
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: GroundingDino
 
 
 
 
 
3
  app_file: app.py
4
+ sdk: gradio
5
+ sdk_version: 3.43.1
6
  ---
7
+ <div align="center">
8
+ <img src="./.asset/grounding_dino_logo.png" width="30%">
9
+ </div>
10
+
11
+ # :sauropod: Grounding DINO
12
+
13
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-mscoco)](https://paperswithcode.com/sota/zero-shot-object-detection-on-mscoco?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/zero-shot-object-detection-on-odinw)](https://paperswithcode.com/sota/zero-shot-object-detection-on-odinw?p=grounding-dino-marrying-dino-with-grounded) \
14
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco-minival)](https://paperswithcode.com/sota/object-detection-on-coco-minival?p=grounding-dino-marrying-dino-with-grounded) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/grounding-dino-marrying-dino-with-grounded/object-detection-on-coco)](https://paperswithcode.com/sota/object-detection-on-coco?p=grounding-dino-marrying-dino-with-grounded)
15
+
16
+
17
+ **[IDEA-CVR, IDEA-Research](https://github.com/IDEA-Research)**
18
+
19
+ [Shilong Liu](http://www.lsl.zone/), [Zhaoyang Zeng](https://scholar.google.com/citations?user=U_cvvUwAAAAJ&hl=zh-CN&oi=ao), [Tianhe Ren](https://rentainhe.github.io/), [Feng Li](https://scholar.google.com/citations?user=ybRe9GcAAAAJ&hl=zh-CN), [Hao Zhang](https://scholar.google.com/citations?user=B8hPxMQAAAAJ&hl=zh-CN), [Jie Yang](https://github.com/yangjie-cv), [Chunyuan Li](https://scholar.google.com/citations?user=Zd7WmXUAAAAJ&hl=zh-CN&oi=ao), [Jianwei Yang](https://jwyang.github.io/), [Hang Su](https://scholar.google.com/citations?hl=en&user=dxN1_X0AAAAJ&view_op=list_works&sortby=pubdate), [Jun Zhu](https://scholar.google.com/citations?hl=en&user=axsP38wAAAAJ), [Lei Zhang](https://www.leizhang.org/)<sup>:email:</sup>.
20
+
21
+
22
+ [[`Paper`](https://arxiv.org/abs/2303.05499)] [[`Demo`](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)] [[`BibTex`](#black_nib-citation)]
23
+
24
+
25
+ PyTorch implementation and pretrained models for Grounding DINO. For details, see the paper **[Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection](https://arxiv.org/abs/2303.05499)**.
26
+
27
+ ## :sun_with_face: Helpful Tutorial
28
+
29
+ - :grapes: [[Read our arXiv Paper](https://arxiv.org/abs/2303.05499)]
30
+ - :apple: [[Watch our simple introduction video on YouTube](https://youtu.be/wxWDt5UiwY8)]
31
+ - :blossom: &nbsp;[[Try the Colab Demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb)]
32
+ - :sunflower: [[Try our Official Huggingface Demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)]
33
+ - :maple_leaf: [[Watch the Step by Step Tutorial about GroundingDINO by Roboflow AI](https://youtu.be/cMa77r3YrDk)]
34
+ - :mushroom: [[GroundingDINO: Automated Dataset Annotation and Evaluation by Roboflow AI](https://youtu.be/C4NqaRBz_Kw)]
35
+ - :hibiscus: [[Accelerate Image Annotation with SAM and GroundingDINO by Roboflow AI](https://youtu.be/oEQYStnF2l8)]
36
+ - :white_flower: [[Autodistill: Train YOLOv8 with ZERO Annotations based on Grounding-DINO and Grounded-SAM by Roboflow AI](https://github.com/autodistill/autodistill)]
37
+
38
+ <!-- Grounding DINO Methods |
39
+ [![arXiv](https://img.shields.io/badge/arXiv-2303.05499-b31b1b.svg)](https://arxiv.org/abs/2303.05499)
40
+ [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/wxWDt5UiwY8) -->
41
+
42
+ <!-- Grounding DINO Demos |
43
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) -->
44
+ <!-- [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/cMa77r3YrDk)
45
+ [![HuggingFace space](https://img.shields.io/badge/πŸ€—-HuggingFace%20Space-cyan.svg)](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo)
46
+ [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/oEQYStnF2l8)
47
+ [![YouTube](https://badges.aleen42.com/src/youtube.svg)](https://youtu.be/C4NqaRBz_Kw) -->
48
+
49
+ ## :sparkles: Highlight Projects
50
+
51
+ - [Semantic-SAM: a universal image segmentation model to enable segment and recognize anything at any desired granularity.](https://github.com/UX-Decoder/Semantic-SAM),
52
+ - [DetGPT: Detect What You Need via Reasoning](https://github.com/OptimalScale/DetGPT)
53
+ - [Grounded-SAM: Marrying Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)
54
+ - [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb)
55
+ - [Grounding DINO with GLIGEN for Controllable Image Editing](demo/image_editing_with_groundingdino_gligen.ipynb)
56
+ - [OpenSeeD: A Simple and Strong Openset Segmentation Model](https://github.com/IDEA-Research/OpenSeeD)
57
+ - [SEEM: Segment Everything Everywhere All at Once](https://github.com/UX-Decoder/Segment-Everything-Everywhere-All-At-Once)
58
+ - [X-GPT: Conversational Visual Agent supported by X-Decoder](https://github.com/microsoft/X-Decoder/tree/xgpt)
59
+ - [GLIGEN: Open-Set Grounded Text-to-Image Generation](https://github.com/gligen/GLIGEN)
60
+ - [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
61
+
62
+ <!-- Extensions | [Grounding DINO with Segment Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything); [Grounding DINO with Stable Diffusion](demo/image_editing_with_groundingdino_stablediffusion.ipynb); [Grounding DINO with GLIGEN](demo/image_editing_with_groundingdino_gligen.ipynb) -->
63
+
64
+
65
+
66
+ <!-- Official PyTorch implementation of [Grounding DINO](https://arxiv.org/abs/2303.05499), a stronger open-set object detector. Code is available now! -->
67
+
68
+
69
+ ## :bulb: Highlight
70
+
71
+ - **Open-Set Detection.** Detect **everything** with language!
72
+ - **High Performancce.** COCO zero-shot **52.5 AP** (training without COCO data!). COCO fine-tune **63.0 AP**.
73
+ - **Flexible.** Collaboration with Stable Diffusion for Image Editting.
74
+
75
+
76
+
77
+
78
+ ## :fire: News
79
+ - **`2023/07/18`**: We release [Semantic-SAM](https://github.com/UX-Decoder/Semantic-SAM), a universal image segmentation model to enable segment and recognize anything at any desired granularity. **Code** and **checkpoint** are available!
80
+ - **`2023/06/17`**: We provide an example to evaluate Grounding DINO on COCO zero-shot performance.
81
+ - **`2023/04/15`**: Refer to [CV in the Wild Readings](https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings) for those who are interested in open-set recognition!
82
+ - **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
83
+ - **`2023/04/08`**: We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
84
+ - **`2023/04/06`**: We build a new demo by marrying GroundingDINO with [Segment-Anything](https://github.com/facebookresearch/segment-anything) named **[Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything)** aims to support segmentation in GroundingDINO.
85
+ - **`2023/03/28`**: A YouTube [video](https://youtu.be/cMa77r3YrDk) about Grounding DINO and basic object detection prompt engineering. [[SkalskiP](https://github.com/SkalskiP)]
86
+ - **`2023/03/28`**: Add a [demo](https://huggingface.co/spaces/ShilongLiu/Grounding_DINO_demo) on Hugging Face Space!
87
+ - **`2023/03/27`**: Support CPU-only mode. Now the model can run on machines without GPUs.
88
+ - **`2023/03/25`**: A [demo](https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/zero-shot-object-detection-with-grounding-dino.ipynb) for Grounding DINO is available at Colab. [[SkalskiP](https://github.com/SkalskiP)]
89
+ - **`2023/03/22`**: Code is available Now!
90
+
91
+ <details open>
92
+ <summary><font size="4">
93
+ Description
94
+ </font></summary>
95
+ <a href="https://arxiv.org/abs/2303.05499">Paper</a> introduction.
96
+ <img src=".asset/hero_figure.png" alt="ODinW" width="100%">
97
+ Marrying <a href="https://github.com/IDEA-Research/GroundingDINO">Grounding DINO</a> and <a href="https://github.com/gligen/GLIGEN">GLIGEN</a>
98
+ <img src="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/GD_GLIGEN.png" alt="gd_gligen" width="100%">
99
+ </details>
100
+
101
+ ## :star: Explanations/Tips for Grounding DINO Inputs and Outputs
102
+ - Grounding DINO accepts an `(image, text)` pair as inputs.
103
+ - It outputs `900` (by default) object boxes. Each box has similarity scores across all input words. (as shown in Figures below.)
104
+ - We defaultly choose the boxes whose highest similarities are higher than a `box_threshold`.
105
+ - We extract the words whose similarities are higher than the `text_threshold` as predicted labels.
106
+ - If you want to obtain objects of specific phrases, like the `dogs` in the sentence `two dogs with a stick.`, you can select the boxes with highest text similarities with `dogs` as final outputs.
107
+ - Note that each word can be split to **more than one** tokens with different tokenlizers. The number of words in a sentence may not equal to the number of text tokens.
108
+ - We suggest separating different category names with `.` for Grounding DINO.
109
+ ![model_explain1](.asset/model_explan1.PNG)
110
+ ![model_explain2](.asset/model_explan2.PNG)
111
+
112
+ ## :label: TODO
113
+
114
+ - [x] Release inference code and demo.
115
+ - [x] Release checkpoints.
116
+ - [x] Grounding DINO with Stable Diffusion and GLIGEN demos.
117
+ - [ ] Release training codes.
118
+
119
+ ## :hammer_and_wrench: Install
120
+
121
+ **Note:**
122
+
123
+ 0. If you have a CUDA environment, please make sure the environment variable `CUDA_HOME` is set. It will be compiled under CPU-only mode if no CUDA available.
124
+
125
+ Please make sure following the installation steps strictly, otherwise the program may produce:
126
+ ```bash
127
+ NameError: name '_C' is not defined
128
+ ```
129
+
130
+ If this happened, please reinstalled the groundingDINO by reclone the git and do all the installation steps again.
131
+
132
+ #### how to check cuda:
133
+ ```bash
134
+ echo $CUDA_HOME
135
+ ```
136
+ If it print nothing, then it means you haven't set up the path/
137
+
138
+ Run this so the environment variable will be set under current shell.
139
+ ```bash
140
+ export CUDA_HOME=/path/to/cuda-11.3
141
+ ```
142
+
143
+ Notice the version of cuda should be aligned with your CUDA runtime, for there might exists multiple cuda at the same time.
144
+
145
+ If you want to set the CUDA_HOME permanently, store it using:
146
+
147
+ ```bash
148
+ echo 'export CUDA_HOME=/path/to/cuda' >> ~/.bashrc
149
+ ```
150
+ after that, source the bashrc file and check CUDA_HOME:
151
+ ```bash
152
+ source ~/.bashrc
153
+ echo $CUDA_HOME
154
+ ```
155
+
156
+ In this example, /path/to/cuda-11.3 should be replaced with the path where your CUDA toolkit is installed. You can find this by typing **which nvcc** in your terminal:
157
+
158
+ For instance,
159
+ if the output is /usr/local/cuda/bin/nvcc, then:
160
+ ```bash
161
+ export CUDA_HOME=/usr/local/cuda
162
+ ```
163
+ **Installation:**
164
+
165
+ 1.Clone the GroundingDINO repository from GitHub.
166
+
167
+ ```bash
168
+ git clone https://github.com/IDEA-Research/GroundingDINO.git
169
+ ```
170
+
171
+ 2. Change the current directory to the GroundingDINO folder.
172
+
173
+ ```bash
174
+ cd GroundingDINO/
175
+ ```
176
+
177
+ 3. Install the required dependencies in the current directory.
178
+
179
+ ```bash
180
+ pip install -e .
181
+ ```
182
+
183
+ 4. Download pre-trained model weights.
184
+
185
+ ```bash
186
+ mkdir weights
187
+ cd weights
188
+ wget -q https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth
189
+ cd ..
190
+ ```
191
+
192
+ ## :arrow_forward: Demo
193
+ Check your GPU ID (only if you're using a GPU)
194
+
195
+ ```bash
196
+ nvidia-smi
197
+ ```
198
+ Replace `{GPU ID}`, `image_you_want_to_detect.jpg`, and `"dir you want to save the output"` with appropriate values in the following command
199
+ ```bash
200
+ CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
201
+ -c groundingdino/config/GroundingDINO_SwinT_OGC.py \
202
+ -p weights/groundingdino_swint_ogc.pth \
203
+ -i image_you_want_to_detect.jpg \
204
+ -o "dir you want to save the output" \
205
+ -t "chair"
206
+ [--cpu-only] # open it for cpu mode
207
+ ```
208
+
209
+ If you would like to specify the phrases to detect, here is a demo:
210
+ ```bash
211
+ CUDA_VISIBLE_DEVICES={GPU ID} python demo/inference_on_a_image.py \
212
+ -c groundingdino/config/GroundingDINO_SwinT_OGC.py \
213
+ -p ./groundingdino_swint_ogc.pth \
214
+ -i .asset/cat_dog.jpeg \
215
+ -o logs/1111 \
216
+ -t "There is a cat and a dog in the image ." \
217
+ --token_spans "[[[9, 10], [11, 14]], [[19, 20], [21, 24]]]"
218
+ [--cpu-only] # open it for cpu mode
219
+ ```
220
+ The token_spans specify the start and end positions of a phrases. For example, the first phrase is `[[9, 10], [11, 14]]`. `"There is a cat and a dog in the image ."[9:10] = 'a'`, `"There is a cat and a dog in the image ."[11:14] = 'cat'`. Hence it refers to the phrase `a cat` . Similarly, the `[[19, 20], [21, 24]]` refers to the phrase `a dog`.
221
+
222
+ See the `demo/inference_on_a_image.py` for more details.
223
+
224
+ **Running with Python:**
225
+
226
+ ```python
227
+ from groundingdino.util.inference import load_model, load_image, predict, annotate
228
+ import cv2
229
+
230
+ model = load_model("groundingdino/config/GroundingDINO_SwinT_OGC.py", "weights/groundingdino_swint_ogc.pth")
231
+ IMAGE_PATH = "weights/dog-3.jpeg"
232
+ TEXT_PROMPT = "chair . person . dog ."
233
+ BOX_TRESHOLD = 0.35
234
+ TEXT_TRESHOLD = 0.25
235
+
236
+ image_source, image = load_image(IMAGE_PATH)
237
+
238
+ boxes, logits, phrases = predict(
239
+ model=model,
240
+ image=image,
241
+ caption=TEXT_PROMPT,
242
+ box_threshold=BOX_TRESHOLD,
243
+ text_threshold=TEXT_TRESHOLD
244
+ )
245
+
246
+ annotated_frame = annotate(image_source=image_source, boxes=boxes, logits=logits, phrases=phrases)
247
+ cv2.imwrite("annotated_image.jpg", annotated_frame)
248
+ ```
249
+ **Web UI**
250
+
251
+ We also provide a demo code to integrate Grounding DINO with Gradio Web UI. See the file `demo/gradio_app.py` for more details.
252
+
253
+ **Notebooks**
254
+
255
+ - We release [demos](demo/image_editing_with_groundingdino_gligen.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [GLIGEN](https://github.com/gligen/GLIGEN) for more controllable image editings.
256
+ - We release [demos](demo/image_editing_with_groundingdino_stablediffusion.ipynb) to combine [Grounding DINO](https://arxiv.org/abs/2303.05499) with [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) for image editings.
257
+
258
+ ## COCO Zero-shot Evaluations
259
+
260
+ We provide an example to evaluate Grounding DINO zero-shot performance on COCO. The results should be **48.5**.
261
+
262
+ ```bash
263
+ CUDA_VISIBLE_DEVICES=0 \
264
+ python demo/test_ap_on_coco.py \
265
+ -c groundingdino/config/GroundingDINO_SwinT_OGC.py \
266
+ -p weights/groundingdino_swint_ogc.pth \
267
+ --anno_path /path/to/annoataions/ie/instances_val2017.json \
268
+ --image_dir /path/to/imagedir/ie/val2017
269
+ ```
270
+
271
+
272
+ ## :luggage: Checkpoints
273
+
274
+ <!-- insert a table -->
275
+ <table>
276
+ <thead>
277
+ <tr style="text-align: right;">
278
+ <th></th>
279
+ <th>name</th>
280
+ <th>backbone</th>
281
+ <th>Data</th>
282
+ <th>box AP on COCO</th>
283
+ <th>Checkpoint</th>
284
+ <th>Config</th>
285
+ </tr>
286
+ </thead>
287
+ <tbody>
288
+ <tr>
289
+ <th>1</th>
290
+ <td>GroundingDINO-T</td>
291
+ <td>Swin-T</td>
292
+ <td>O365,GoldG,Cap4M</td>
293
+ <td>48.4 (zero-shot) / 57.2 (fine-tune)</td>
294
+ <td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swint_ogc.pth">HF link</a></td>
295
+ <td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinT_OGC.py">link</a></td>
296
+ </tr>
297
+ <tr>
298
+ <th>2</th>
299
+ <td>GroundingDINO-B</td>
300
+ <td>Swin-B</td>
301
+ <td>COCO,O365,GoldG,Cap4M,OpenImage,ODinW-35,RefCOCO</td>
302
+ <td>56.7 </td>
303
+ <td><a href="https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha2/groundingdino_swinb_cogcoor.pth">GitHub link</a> | <a href="https://huggingface.co/ShilongLiu/GroundingDINO/resolve/main/groundingdino_swinb_cogcoor.pth">HF link</a>
304
+ <td><a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/groundingdino/config/GroundingDINO_SwinB_cfg.py">link</a></td>
305
+ </tr>
306
+ </tbody>
307
+ </table>
308
+
309
+ ## :medal_military: Results
310
+
311
+ <details open>
312
+ <summary><font size="4">
313
+ COCO Object Detection Results
314
+ </font></summary>
315
+ <img src=".asset/COCO.png" alt="COCO" width="100%">
316
+ </details>
317
+
318
+ <details open>
319
+ <summary><font size="4">
320
+ ODinW Object Detection Results
321
+ </font></summary>
322
+ <img src=".asset/ODinW.png" alt="ODinW" width="100%">
323
+ </details>
324
+
325
+ <details open>
326
+ <summary><font size="4">
327
+ Marrying Grounding DINO with <a href="https://github.com/Stability-AI/StableDiffusion">Stable Diffusion</a> for Image Editing
328
+ </font></summary>
329
+ See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_stablediffusion.ipynb">notebook</a> for more details.
330
+ <img src=".asset/GD_SD.png" alt="GD_SD" width="100%">
331
+ </details>
332
+
333
+
334
+ <details open>
335
+ <summary><font size="4">
336
+ Marrying Grounding DINO with <a href="https://github.com/gligen/GLIGEN">GLIGEN</a> for more Detailed Image Editing.
337
+ </font></summary>
338
+ See our example <a href="https://github.com/IDEA-Research/GroundingDINO/blob/main/demo/image_editing_with_groundingdino_gligen.ipynb">notebook</a> for more details.
339
+ <img src=".asset/GD_GLIGEN.png" alt="GD_GLIGEN" width="100%">
340
+ </details>
341
+
342
+ ## :sauropod: Model: Grounding DINO
343
+
344
+ Includes: a text backbone, an image backbone, a feature enhancer, a language-guided query selection, and a cross-modality decoder.
345
+
346
+ ![arch](.asset/arch.png)
347
+
348
+
349
+ ## :hearts: Acknowledgement
350
+
351
+ Our model is related to [DINO](https://github.com/IDEA-Research/DINO) and [GLIP](https://github.com/microsoft/GLIP). Thanks for their great work!
352
+
353
+ We also thank great previous work including DETR, Deformable DETR, SMCA, Conditional DETR, Anchor DETR, Dynamic DETR, DAB-DETR, DN-DETR, etc. More related work are available at [Awesome Detection Transformer](https://github.com/IDEACVR/awesome-detection-transformer). A new toolbox [detrex](https://github.com/IDEA-Research/detrex) is available as well.
354
+
355
+ Thanks [Stable Diffusion](https://github.com/Stability-AI/StableDiffusion) and [GLIGEN](https://github.com/gligen/GLIGEN) for their awesome models.
356
+
357
+
358
+ ## :black_nib: Citation
359
+
360
+ If you find our work helpful for your research, please consider citing the following BibTeX entry.
361
+
362
+ ```bibtex
363
+ @article{liu2023grounding,
364
+ title={Grounding dino: Marrying dino with grounded pre-training for open-set object detection},
365
+ author={Liu, Shilong and Zeng, Zhaoyang and Ren, Tianhe and Li, Feng and Zhang, Hao and Yang, Jie and Li, Chunyuan and Yang, Jianwei and Su, Hang and Zhu, Jun and others},
366
+ journal={arXiv preprint arXiv:2303.05499},
367
+ year={2023}
368
+ }
369
+ ```
370
+
371
+
372
+
373
 
 
app.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from functools import partial
3
+ import cv2
4
+ import requests
5
+ import os
6
+ from io import BytesIO
7
+ from PIL import Image
8
+ import numpy as np
9
+ from pathlib import Path
10
+ import gradio as gr
11
+
12
+ import warnings
13
+
14
+ import torch
15
+
16
+ os.system("python setup.py build develop --user")
17
+ os.system("pip install packaging==21.3")
18
+ warnings.filterwarnings("ignore")
19
+
20
+
21
+ from groundingdino.models import build_model
22
+ from groundingdino.util.slconfig import SLConfig
23
+ from groundingdino.util.utils import clean_state_dict
24
+ from groundingdino.util.inference import annotate, load_image, predict
25
+ import groundingdino.datasets.transforms as T
26
+
27
+ from huggingface_hub import hf_hub_download
28
+
29
+
30
+
31
+ # Use this command for evaluate the GLIP-T model
32
+ config_file = "groundingdino/config/GroundingDINO_SwinT_OGC.py"
33
+ ckpt_repo_id = "ShilongLiu/GroundingDINO"
34
+ ckpt_filenmae = "groundingdino_swint_ogc.pth"
35
+
36
+
37
+ def load_model_hf(model_config_path, repo_id, filename, device='cuda'):
38
+ args = SLConfig.fromfile(model_config_path)
39
+ model = build_model(args)
40
+ args.device = device
41
+
42
+ cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
43
+ checkpoint = torch.load(cache_file, map_location='cuda')
44
+ log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
45
+ print("Model loaded from {} \n => {}".format(cache_file, log))
46
+ _ = model.eval()
47
+ return model
48
+
49
+ def image_transform_grounding(init_image):
50
+ transform = T.Compose([
51
+ T.RandomResize([800], max_size=1333),
52
+ T.ToTensor(),
53
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
54
+ ])
55
+ image, _ = transform(init_image, None) # 3, h, w
56
+ return init_image, image
57
+
58
+ def image_transform_grounding_for_vis(init_image):
59
+ transform = T.Compose([
60
+ T.RandomResize([800], max_size=1333),
61
+ ])
62
+ image, _ = transform(init_image, None) # 3, h, w
63
+ return image
64
+
65
+ model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
66
+
67
+ def run_grounding(input_image, grounding_caption, box_threshold, text_threshold):
68
+ init_image = input_image.convert("RGB")
69
+ original_size = init_image.size
70
+
71
+ _, image_tensor = image_transform_grounding(init_image)
72
+ image_pil: Image = image_transform_grounding_for_vis(init_image)
73
+
74
+ # run grounding dino
75
+ boxes, logits, phrases = predict(model, image_tensor, grounding_caption, box_threshold, text_threshold, device='cuda')
76
+ annotated_frame = annotate(image_source=np.asarray(image_pil), boxes=boxes, logits=logits, phrases=phrases)
77
+ image_with_box = Image.fromarray(cv2.cvtColor(annotated_frame, cv2.COLOR_BGR2RGB))
78
+ h, w, _ = np.asarray(image_pil).shape
79
+ boxes = boxes * torch.Tensor([w, h, w, h])
80
+ detections = {}
81
+
82
+ # write to json
83
+ for phrase, box, score in zip(phrases, boxes, logits):
84
+ # from xywh to xyxy
85
+ box[:2] -= box[2:] / 2
86
+ box[2:] += box[:2]
87
+ if phrase not in detections:
88
+ detections[phrase] = []
89
+ detections[phrase].append(
90
+ {
91
+ "xmin": float(box[0]),
92
+ "ymin": float(box[1]),
93
+ "xmax": float(box[2]),
94
+ "ymax": float(box[3]),
95
+ "score": float(score),
96
+ }
97
+ )
98
+
99
+ output = {
100
+ "grounding_dino_results": {
101
+ "detections": detections,
102
+ }
103
+ }
104
+
105
+ return image_with_box, output
106
+
107
+ if __name__ == "__main__":
108
+
109
+ parser = argparse.ArgumentParser("Grounding DINO demo", add_help=True)
110
+ parser.add_argument("--debug", action="store_true", help="using debug mode")
111
+ parser.add_argument("--share", action="store_true", help="share the app")
112
+ args = parser.parse_args()
113
+ css = """
114
+ #mkd {
115
+ height: 500px;
116
+ overflow: auto;
117
+ border: 1px solid #ccc;
118
+ }
119
+ """
120
+ with gr.Blocks(theme='trimble/trimble_ai_theme') as demo:
121
+ gr.HTML("<img src=\"https://huggingface.co/spaces/trimble/trimble_ai_theme/resolve/main/images/logo.png\">")
122
+ gr.Markdown("<h1><center>Grounding DINO<h1><center>")
123
+ gr.Markdown("<h3><center>Open-World Detection with <a href='https://github.com/IDEA-Research/GroundingDINO'>Grounding DINO</a><h3><center>")
124
+
125
+ with gr.Row():
126
+ with gr.Column():
127
+ input_image = gr.Image(source='upload', type="pil")
128
+ grounding_caption = gr.Textbox(label="Detection Prompt")
129
+ run_button = gr.Button(label="Run")
130
+ with gr.Accordion("Advanced options", open=False):
131
+ box_threshold = gr.Slider(
132
+ label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
133
+ )
134
+ text_threshold = gr.Slider(
135
+ label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
136
+ )
137
+
138
+ with gr.Column():
139
+ gallery = gr.outputs.Image(
140
+ type="pil",
141
+ ).style(full_width=True, full_height=True)
142
+ output_json = gr.JSON()
143
+
144
+ run_button.click(fn=run_grounding, inputs=[
145
+ input_image, grounding_caption, box_threshold, text_threshold], outputs=[gallery, output_json])
146
+ gr.Examples(
147
+ [["demo.jpg", "a person", 0.25, 0.25]],
148
+ inputs = [input_image, grounding_caption, box_threshold, text_threshold],
149
+ outputs = [gallery, output_json],
150
+ fn=run_grounding,
151
+ cache_examples=True,
152
+ label='Try this example input!'
153
+ )
154
+ demo.launch()
155
+
demo.jpg ADDED
groundingdino/__init__.py ADDED
File without changes
groundingdino/config/GroundingDINO_SwinB_cfg.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ batch_size = 1
2
+ modelname = "groundingdino"
3
+ backbone = "swin_B_384_22k"
4
+ position_embedding = "sine"
5
+ pe_temperatureH = 20
6
+ pe_temperatureW = 20
7
+ return_interm_indices = [1, 2, 3]
8
+ backbone_freeze_keywords = None
9
+ enc_layers = 6
10
+ dec_layers = 6
11
+ pre_norm = False
12
+ dim_feedforward = 2048
13
+ hidden_dim = 256
14
+ dropout = 0.0
15
+ nheads = 8
16
+ num_queries = 900
17
+ query_dim = 4
18
+ num_patterns = 0
19
+ num_feature_levels = 4
20
+ enc_n_points = 4
21
+ dec_n_points = 4
22
+ two_stage_type = "standard"
23
+ two_stage_bbox_embed_share = False
24
+ two_stage_class_embed_share = False
25
+ transformer_activation = "relu"
26
+ dec_pred_bbox_embed_share = True
27
+ dn_box_noise_scale = 1.0
28
+ dn_label_noise_ratio = 0.5
29
+ dn_label_coef = 1.0
30
+ dn_bbox_coef = 1.0
31
+ embed_init_tgt = True
32
+ dn_labelbook_size = 2000
33
+ max_text_len = 256
34
+ text_encoder_type = "bert-base-uncased"
35
+ use_text_enhancer = True
36
+ use_fusion_layer = True
37
+ use_checkpoint = True
38
+ use_transformer_ckpt = True
39
+ use_text_cross_attention = True
40
+ text_dropout = 0.0
41
+ fusion_dropout = 0.0
42
+ fusion_droppath = 0.1
43
+ sub_sentence_present = True
groundingdino/config/GroundingDINO_SwinT_OGC.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ batch_size = 1
2
+ modelname = "groundingdino"
3
+ backbone = "swin_T_224_1k"
4
+ position_embedding = "sine"
5
+ pe_temperatureH = 20
6
+ pe_temperatureW = 20
7
+ return_interm_indices = [1, 2, 3]
8
+ backbone_freeze_keywords = None
9
+ enc_layers = 6
10
+ dec_layers = 6
11
+ pre_norm = False
12
+ dim_feedforward = 2048
13
+ hidden_dim = 256
14
+ dropout = 0.0
15
+ nheads = 8
16
+ num_queries = 900
17
+ query_dim = 4
18
+ num_patterns = 0
19
+ num_feature_levels = 4
20
+ enc_n_points = 4
21
+ dec_n_points = 4
22
+ two_stage_type = "standard"
23
+ two_stage_bbox_embed_share = False
24
+ two_stage_class_embed_share = False
25
+ transformer_activation = "relu"
26
+ dec_pred_bbox_embed_share = True
27
+ dn_box_noise_scale = 1.0
28
+ dn_label_noise_ratio = 0.5
29
+ dn_label_coef = 1.0
30
+ dn_bbox_coef = 1.0
31
+ embed_init_tgt = True
32
+ dn_labelbook_size = 2000
33
+ max_text_len = 256
34
+ text_encoder_type = "bert-base-uncased"
35
+ use_text_enhancer = True
36
+ use_fusion_layer = True
37
+ use_checkpoint = True
38
+ use_transformer_ckpt = True
39
+ use_text_cross_attention = True
40
+ text_dropout = 0.0
41
+ fusion_dropout = 0.0
42
+ fusion_droppath = 0.1
43
+ sub_sentence_present = True
groundingdino/config/__init__.py ADDED
File without changes
groundingdino/datasets/__init__.py ADDED
File without changes
groundingdino/datasets/cocogrounding_eval.py ADDED
@@ -0,0 +1,269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO. Midified by Shilong Liu.
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
8
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
9
+ """
10
+ COCO evaluator that works in distributed mode.
11
+
12
+ Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
13
+ The difference is that there is less copy-pasting from pycocotools
14
+ in the end of the file, as python3 can suppress prints with contextlib
15
+ """
16
+ import contextlib
17
+ import copy
18
+ import os
19
+
20
+ import numpy as np
21
+ import pycocotools.mask as mask_util
22
+ import torch
23
+ from pycocotools.coco import COCO
24
+ from pycocotools.cocoeval import COCOeval
25
+
26
+ from groundingdino.util.misc import all_gather
27
+
28
+
29
+ class CocoGroundingEvaluator(object):
30
+ def __init__(self, coco_gt, iou_types, useCats=True):
31
+ assert isinstance(iou_types, (list, tuple))
32
+ coco_gt = copy.deepcopy(coco_gt)
33
+ self.coco_gt = coco_gt
34
+
35
+ self.iou_types = iou_types
36
+ self.coco_eval = {}
37
+ for iou_type in iou_types:
38
+ self.coco_eval[iou_type] = COCOeval(coco_gt, iouType=iou_type)
39
+ self.coco_eval[iou_type].useCats = useCats
40
+
41
+ self.img_ids = []
42
+ self.eval_imgs = {k: [] for k in iou_types}
43
+ self.useCats = useCats
44
+
45
+ def update(self, predictions):
46
+ img_ids = list(np.unique(list(predictions.keys())))
47
+ self.img_ids.extend(img_ids)
48
+
49
+ for iou_type in self.iou_types:
50
+ results = self.prepare(predictions, iou_type)
51
+
52
+ # suppress pycocotools prints
53
+ with open(os.devnull, "w") as devnull:
54
+ with contextlib.redirect_stdout(devnull):
55
+ coco_dt = COCO.loadRes(self.coco_gt, results) if results else COCO()
56
+
57
+ coco_eval = self.coco_eval[iou_type]
58
+
59
+ coco_eval.cocoDt = coco_dt
60
+ coco_eval.params.imgIds = list(img_ids)
61
+ coco_eval.params.useCats = self.useCats
62
+ img_ids, eval_imgs = evaluate(coco_eval)
63
+
64
+ self.eval_imgs[iou_type].append(eval_imgs)
65
+
66
+ def synchronize_between_processes(self):
67
+ for iou_type in self.iou_types:
68
+ self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
69
+ create_common_coco_eval(self.coco_eval[iou_type], self.img_ids, self.eval_imgs[iou_type])
70
+
71
+ def accumulate(self):
72
+ for coco_eval in self.coco_eval.values():
73
+ coco_eval.accumulate()
74
+
75
+ def summarize(self):
76
+ for iou_type, coco_eval in self.coco_eval.items():
77
+ print("IoU metric: {}".format(iou_type))
78
+ coco_eval.summarize()
79
+
80
+ def prepare(self, predictions, iou_type):
81
+ if iou_type == "bbox":
82
+ return self.prepare_for_coco_detection(predictions)
83
+ elif iou_type == "segm":
84
+ return self.prepare_for_coco_segmentation(predictions)
85
+ elif iou_type == "keypoints":
86
+ return self.prepare_for_coco_keypoint(predictions)
87
+ else:
88
+ raise ValueError("Unknown iou type {}".format(iou_type))
89
+
90
+ def prepare_for_coco_detection(self, predictions):
91
+ coco_results = []
92
+ for original_id, prediction in predictions.items():
93
+ if len(prediction) == 0:
94
+ continue
95
+
96
+ boxes = prediction["boxes"]
97
+ boxes = convert_to_xywh(boxes).tolist()
98
+ scores = prediction["scores"].tolist()
99
+ labels = prediction["labels"].tolist()
100
+
101
+ coco_results.extend(
102
+ [
103
+ {
104
+ "image_id": original_id,
105
+ "category_id": labels[k],
106
+ "bbox": box,
107
+ "score": scores[k],
108
+ }
109
+ for k, box in enumerate(boxes)
110
+ ]
111
+ )
112
+ return coco_results
113
+
114
+ def prepare_for_coco_segmentation(self, predictions):
115
+ coco_results = []
116
+ for original_id, prediction in predictions.items():
117
+ if len(prediction) == 0:
118
+ continue
119
+
120
+ scores = prediction["scores"]
121
+ labels = prediction["labels"]
122
+ masks = prediction["masks"]
123
+
124
+ masks = masks > 0.5
125
+
126
+ scores = prediction["scores"].tolist()
127
+ labels = prediction["labels"].tolist()
128
+
129
+ rles = [
130
+ mask_util.encode(np.array(mask[0, :, :, np.newaxis], dtype=np.uint8, order="F"))[0]
131
+ for mask in masks
132
+ ]
133
+ for rle in rles:
134
+ rle["counts"] = rle["counts"].decode("utf-8")
135
+
136
+ coco_results.extend(
137
+ [
138
+ {
139
+ "image_id": original_id,
140
+ "category_id": labels[k],
141
+ "segmentation": rle,
142
+ "score": scores[k],
143
+ }
144
+ for k, rle in enumerate(rles)
145
+ ]
146
+ )
147
+ return coco_results
148
+
149
+ def prepare_for_coco_keypoint(self, predictions):
150
+ coco_results = []
151
+ for original_id, prediction in predictions.items():
152
+ if len(prediction) == 0:
153
+ continue
154
+
155
+ boxes = prediction["boxes"]
156
+ boxes = convert_to_xywh(boxes).tolist()
157
+ scores = prediction["scores"].tolist()
158
+ labels = prediction["labels"].tolist()
159
+ keypoints = prediction["keypoints"]
160
+ keypoints = keypoints.flatten(start_dim=1).tolist()
161
+
162
+ coco_results.extend(
163
+ [
164
+ {
165
+ "image_id": original_id,
166
+ "category_id": labels[k],
167
+ "keypoints": keypoint,
168
+ "score": scores[k],
169
+ }
170
+ for k, keypoint in enumerate(keypoints)
171
+ ]
172
+ )
173
+ return coco_results
174
+
175
+
176
+ def convert_to_xywh(boxes):
177
+ xmin, ymin, xmax, ymax = boxes.unbind(1)
178
+ return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=1)
179
+
180
+
181
+ def merge(img_ids, eval_imgs):
182
+ all_img_ids = all_gather(img_ids)
183
+ all_eval_imgs = all_gather(eval_imgs)
184
+
185
+ merged_img_ids = []
186
+ for p in all_img_ids:
187
+ merged_img_ids.extend(p)
188
+
189
+ merged_eval_imgs = []
190
+ for p in all_eval_imgs:
191
+ merged_eval_imgs.append(p)
192
+
193
+ merged_img_ids = np.array(merged_img_ids)
194
+ merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
195
+
196
+ # keep only unique (and in sorted order) images
197
+ merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
198
+ merged_eval_imgs = merged_eval_imgs[..., idx]
199
+
200
+ return merged_img_ids, merged_eval_imgs
201
+
202
+
203
+ def create_common_coco_eval(coco_eval, img_ids, eval_imgs):
204
+ img_ids, eval_imgs = merge(img_ids, eval_imgs)
205
+ img_ids = list(img_ids)
206
+ eval_imgs = list(eval_imgs.flatten())
207
+
208
+ coco_eval.evalImgs = eval_imgs
209
+ coco_eval.params.imgIds = img_ids
210
+ coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
211
+
212
+
213
+ #################################################################
214
+ # From pycocotools, just removed the prints and fixed
215
+ # a Python3 bug about unicode not defined
216
+ #################################################################
217
+
218
+
219
+ def evaluate(self):
220
+ """
221
+ Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
222
+ :return: None
223
+ """
224
+ # tic = time.time()
225
+ # print('Running per image evaluation...')
226
+ p = self.params
227
+ # add backward compatibility if useSegm is specified in params
228
+ if p.useSegm is not None:
229
+ p.iouType = "segm" if p.useSegm == 1 else "bbox"
230
+ print("useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType))
231
+ # print('Evaluate annotation type *{}*'.format(p.iouType))
232
+ p.imgIds = list(np.unique(p.imgIds))
233
+ if p.useCats:
234
+ p.catIds = list(np.unique(p.catIds))
235
+ p.maxDets = sorted(p.maxDets)
236
+ self.params = p
237
+
238
+ self._prepare()
239
+ # loop through images, area range, max detection number
240
+ catIds = p.catIds if p.useCats else [-1]
241
+
242
+ if p.iouType == "segm" or p.iouType == "bbox":
243
+ computeIoU = self.computeIoU
244
+ elif p.iouType == "keypoints":
245
+ computeIoU = self.computeOks
246
+ self.ious = {
247
+ (imgId, catId): computeIoU(imgId, catId)
248
+ for imgId in p.imgIds
249
+ for catId in catIds}
250
+
251
+ evaluateImg = self.evaluateImg
252
+ maxDet = p.maxDets[-1]
253
+ evalImgs = [
254
+ evaluateImg(imgId, catId, areaRng, maxDet)
255
+ for catId in catIds
256
+ for areaRng in p.areaRng
257
+ for imgId in p.imgIds
258
+ ]
259
+ # this is NOT in the pycocotools code, but could be done outside
260
+ evalImgs = np.asarray(evalImgs).reshape(len(catIds), len(p.areaRng), len(p.imgIds))
261
+ self._paramsEval = copy.deepcopy(self.params)
262
+ # toc = time.time()
263
+ # print('DONE (t={:0.2f}s).'.format(toc-tic))
264
+ return p.imgIds, evalImgs
265
+
266
+
267
+ #################################################################
268
+ # end of straight copy from pycocotools, just removing the prints
269
+ #################################################################
groundingdino/datasets/transforms.py ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ """
3
+ Transforms and data augmentation for both image + bbox.
4
+ """
5
+ import os
6
+ import random
7
+
8
+ import PIL
9
+ import torch
10
+ import torchvision.transforms as T
11
+ import torchvision.transforms.functional as F
12
+
13
+ from groundingdino.util.box_ops import box_xyxy_to_cxcywh
14
+ from groundingdino.util.misc import interpolate
15
+
16
+
17
+ def crop(image, target, region):
18
+ cropped_image = F.crop(image, *region)
19
+
20
+ target = target.copy()
21
+ i, j, h, w = region
22
+
23
+ # should we do something wrt the original size?
24
+ target["size"] = torch.tensor([h, w])
25
+
26
+ fields = ["labels", "area", "iscrowd", "positive_map"]
27
+
28
+ if "boxes" in target:
29
+ boxes = target["boxes"]
30
+ max_size = torch.as_tensor([w, h], dtype=torch.float32)
31
+ cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
32
+ cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
33
+ cropped_boxes = cropped_boxes.clamp(min=0)
34
+ area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
35
+ target["boxes"] = cropped_boxes.reshape(-1, 4)
36
+ target["area"] = area
37
+ fields.append("boxes")
38
+
39
+ if "masks" in target:
40
+ # FIXME should we update the area here if there are no boxes?
41
+ target["masks"] = target["masks"][:, i : i + h, j : j + w]
42
+ fields.append("masks")
43
+
44
+ # remove elements for which the boxes or masks that have zero area
45
+ if "boxes" in target or "masks" in target:
46
+ # favor boxes selection when defining which elements to keep
47
+ # this is compatible with previous implementation
48
+ if "boxes" in target:
49
+ cropped_boxes = target["boxes"].reshape(-1, 2, 2)
50
+ keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
51
+ else:
52
+ keep = target["masks"].flatten(1).any(1)
53
+
54
+ for field in fields:
55
+ if field in target:
56
+ target[field] = target[field][keep]
57
+
58
+ if os.environ.get("IPDB_SHILONG_DEBUG", None) == "INFO":
59
+ # for debug and visualization only.
60
+ if "strings_positive" in target:
61
+ target["strings_positive"] = [
62
+ _i for _i, _j in zip(target["strings_positive"], keep) if _j
63
+ ]
64
+
65
+ return cropped_image, target
66
+
67
+
68
+ def hflip(image, target):
69
+ flipped_image = F.hflip(image)
70
+
71
+ w, h = image.size
72
+
73
+ target = target.copy()
74
+ if "boxes" in target:
75
+ boxes = target["boxes"]
76
+ boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor(
77
+ [w, 0, w, 0]
78
+ )
79
+ target["boxes"] = boxes
80
+
81
+ if "masks" in target:
82
+ target["masks"] = target["masks"].flip(-1)
83
+
84
+ return flipped_image, target
85
+
86
+
87
+ def resize(image, target, size, max_size=None):
88
+ # size can be min_size (scalar) or (w, h) tuple
89
+
90
+ def get_size_with_aspect_ratio(image_size, size, max_size=None):
91
+ w, h = image_size
92
+ if max_size is not None:
93
+ min_original_size = float(min((w, h)))
94
+ max_original_size = float(max((w, h)))
95
+ if max_original_size / min_original_size * size > max_size:
96
+ size = int(round(max_size * min_original_size / max_original_size))
97
+
98
+ if (w <= h and w == size) or (h <= w and h == size):
99
+ return (h, w)
100
+
101
+ if w < h:
102
+ ow = size
103
+ oh = int(size * h / w)
104
+ else:
105
+ oh = size
106
+ ow = int(size * w / h)
107
+
108
+ return (oh, ow)
109
+
110
+ def get_size(image_size, size, max_size=None):
111
+ if isinstance(size, (list, tuple)):
112
+ return size[::-1]
113
+ else:
114
+ return get_size_with_aspect_ratio(image_size, size, max_size)
115
+
116
+ size = get_size(image.size, size, max_size)
117
+ rescaled_image = F.resize(image, size)
118
+
119
+ if target is None:
120
+ return rescaled_image, None
121
+
122
+ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
123
+ ratio_width, ratio_height = ratios
124
+
125
+ target = target.copy()
126
+ if "boxes" in target:
127
+ boxes = target["boxes"]
128
+ scaled_boxes = boxes * torch.as_tensor(
129
+ [ratio_width, ratio_height, ratio_width, ratio_height]
130
+ )
131
+ target["boxes"] = scaled_boxes
132
+
133
+ if "area" in target:
134
+ area = target["area"]
135
+ scaled_area = area * (ratio_width * ratio_height)
136
+ target["area"] = scaled_area
137
+
138
+ h, w = size
139
+ target["size"] = torch.tensor([h, w])
140
+
141
+ if "masks" in target:
142
+ target["masks"] = (
143
+ interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0] > 0.5
144
+ )
145
+
146
+ return rescaled_image, target
147
+
148
+
149
+ def pad(image, target, padding):
150
+ # assumes that we only pad on the bottom right corners
151
+ padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
152
+ if target is None:
153
+ return padded_image, None
154
+ target = target.copy()
155
+ # should we do something wrt the original size?
156
+ target["size"] = torch.tensor(padded_image.size[::-1])
157
+ if "masks" in target:
158
+ target["masks"] = torch.nn.functional.pad(target["masks"], (0, padding[0], 0, padding[1]))
159
+ return padded_image, target
160
+
161
+
162
+ class ResizeDebug(object):
163
+ def __init__(self, size):
164
+ self.size = size
165
+
166
+ def __call__(self, img, target):
167
+ return resize(img, target, self.size)
168
+
169
+
170
+ class RandomCrop(object):
171
+ def __init__(self, size):
172
+ self.size = size
173
+
174
+ def __call__(self, img, target):
175
+ region = T.RandomCrop.get_params(img, self.size)
176
+ return crop(img, target, region)
177
+
178
+
179
+ class RandomSizeCrop(object):
180
+ def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
181
+ # respect_boxes: True to keep all boxes
182
+ # False to tolerence box filter
183
+ self.min_size = min_size
184
+ self.max_size = max_size
185
+ self.respect_boxes = respect_boxes
186
+
187
+ def __call__(self, img: PIL.Image.Image, target: dict):
188
+ init_boxes = len(target["boxes"])
189
+ max_patience = 10
190
+ for i in range(max_patience):
191
+ w = random.randint(self.min_size, min(img.width, self.max_size))
192
+ h = random.randint(self.min_size, min(img.height, self.max_size))
193
+ region = T.RandomCrop.get_params(img, [h, w])
194
+ result_img, result_target = crop(img, target, region)
195
+ if (
196
+ not self.respect_boxes
197
+ or len(result_target["boxes"]) == init_boxes
198
+ or i == max_patience - 1
199
+ ):
200
+ return result_img, result_target
201
+ return result_img, result_target
202
+
203
+
204
+ class CenterCrop(object):
205
+ def __init__(self, size):
206
+ self.size = size
207
+
208
+ def __call__(self, img, target):
209
+ image_width, image_height = img.size
210
+ crop_height, crop_width = self.size
211
+ crop_top = int(round((image_height - crop_height) / 2.0))
212
+ crop_left = int(round((image_width - crop_width) / 2.0))
213
+ return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
214
+
215
+
216
+ class RandomHorizontalFlip(object):
217
+ def __init__(self, p=0.5):
218
+ self.p = p
219
+
220
+ def __call__(self, img, target):
221
+ if random.random() < self.p:
222
+ return hflip(img, target)
223
+ return img, target
224
+
225
+
226
+ class RandomResize(object):
227
+ def __init__(self, sizes, max_size=None):
228
+ assert isinstance(sizes, (list, tuple))
229
+ self.sizes = sizes
230
+ self.max_size = max_size
231
+
232
+ def __call__(self, img, target=None):
233
+ size = random.choice(self.sizes)
234
+ return resize(img, target, size, self.max_size)
235
+
236
+
237
+ class RandomPad(object):
238
+ def __init__(self, max_pad):
239
+ self.max_pad = max_pad
240
+
241
+ def __call__(self, img, target):
242
+ pad_x = random.randint(0, self.max_pad)
243
+ pad_y = random.randint(0, self.max_pad)
244
+ return pad(img, target, (pad_x, pad_y))
245
+
246
+
247
+ class RandomSelect(object):
248
+ """
249
+ Randomly selects between transforms1 and transforms2,
250
+ with probability p for transforms1 and (1 - p) for transforms2
251
+ """
252
+
253
+ def __init__(self, transforms1, transforms2, p=0.5):
254
+ self.transforms1 = transforms1
255
+ self.transforms2 = transforms2
256
+ self.p = p
257
+
258
+ def __call__(self, img, target):
259
+ if random.random() < self.p:
260
+ return self.transforms1(img, target)
261
+ return self.transforms2(img, target)
262
+
263
+
264
+ class ToTensor(object):
265
+ def __call__(self, img, target):
266
+ return F.to_tensor(img), target
267
+
268
+
269
+ class RandomErasing(object):
270
+ def __init__(self, *args, **kwargs):
271
+ self.eraser = T.RandomErasing(*args, **kwargs)
272
+
273
+ def __call__(self, img, target):
274
+ return self.eraser(img), target
275
+
276
+
277
+ class Normalize(object):
278
+ def __init__(self, mean, std):
279
+ self.mean = mean
280
+ self.std = std
281
+
282
+ def __call__(self, image, target=None):
283
+ image = F.normalize(image, mean=self.mean, std=self.std)
284
+ if target is None:
285
+ return image, None
286
+ target = target.copy()
287
+ h, w = image.shape[-2:]
288
+ if "boxes" in target:
289
+ boxes = target["boxes"]
290
+ boxes = box_xyxy_to_cxcywh(boxes)
291
+ boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
292
+ target["boxes"] = boxes
293
+ return image, target
294
+
295
+
296
+ class Compose(object):
297
+ def __init__(self, transforms):
298
+ self.transforms = transforms
299
+
300
+ def __call__(self, image, target):
301
+ for t in self.transforms:
302
+ image, target = t(image, target)
303
+ return image, target
304
+
305
+ def __repr__(self):
306
+ format_string = self.__class__.__name__ + "("
307
+ for t in self.transforms:
308
+ format_string += "\n"
309
+ format_string += " {0}".format(t)
310
+ format_string += "\n)"
311
+ return format_string
groundingdino/models/GroundingDINO/__init__.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Conditional DETR
8
+ # Copyright (c) 2021 Microsoft. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------
11
+ # Copied from DETR (https://github.com/facebookresearch/detr)
12
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
13
+ # ------------------------------------------------------------------------
14
+
15
+ from .groundingdino import build_groundingdino
groundingdino/models/GroundingDINO/backbone/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .backbone import build_backbone
groundingdino/models/GroundingDINO/backbone/backbone.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Conditional DETR
8
+ # Copyright (c) 2021 Microsoft. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------
11
+ # Copied from DETR (https://github.com/facebookresearch/detr)
12
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
13
+ # ------------------------------------------------------------------------
14
+
15
+ """
16
+ Backbone modules.
17
+ """
18
+
19
+ from typing import Dict, List
20
+
21
+ import torch
22
+ import torch.nn.functional as F
23
+ import torchvision
24
+ from torch import nn
25
+ from torchvision.models._utils import IntermediateLayerGetter
26
+
27
+ from groundingdino.util.misc import NestedTensor, clean_state_dict, is_main_process
28
+
29
+ from .position_encoding import build_position_encoding
30
+ from .swin_transformer import build_swin_transformer
31
+
32
+
33
+ class FrozenBatchNorm2d(torch.nn.Module):
34
+ """
35
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
36
+
37
+ Copy-paste from torchvision.misc.ops with added eps before rqsrt,
38
+ without which any other models than torchvision.models.resnet[18,34,50,101]
39
+ produce nans.
40
+ """
41
+
42
+ def __init__(self, n):
43
+ super(FrozenBatchNorm2d, self).__init__()
44
+ self.register_buffer("weight", torch.ones(n))
45
+ self.register_buffer("bias", torch.zeros(n))
46
+ self.register_buffer("running_mean", torch.zeros(n))
47
+ self.register_buffer("running_var", torch.ones(n))
48
+
49
+ def _load_from_state_dict(
50
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
51
+ ):
52
+ num_batches_tracked_key = prefix + "num_batches_tracked"
53
+ if num_batches_tracked_key in state_dict:
54
+ del state_dict[num_batches_tracked_key]
55
+
56
+ super(FrozenBatchNorm2d, self)._load_from_state_dict(
57
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
58
+ )
59
+
60
+ def forward(self, x):
61
+ # move reshapes to the beginning
62
+ # to make it fuser-friendly
63
+ w = self.weight.reshape(1, -1, 1, 1)
64
+ b = self.bias.reshape(1, -1, 1, 1)
65
+ rv = self.running_var.reshape(1, -1, 1, 1)
66
+ rm = self.running_mean.reshape(1, -1, 1, 1)
67
+ eps = 1e-5
68
+ scale = w * (rv + eps).rsqrt()
69
+ bias = b - rm * scale
70
+ return x * scale + bias
71
+
72
+
73
+ class BackboneBase(nn.Module):
74
+ def __init__(
75
+ self,
76
+ backbone: nn.Module,
77
+ train_backbone: bool,
78
+ num_channels: int,
79
+ return_interm_indices: list,
80
+ ):
81
+ super().__init__()
82
+ for name, parameter in backbone.named_parameters():
83
+ if (
84
+ not train_backbone
85
+ or "layer2" not in name
86
+ and "layer3" not in name
87
+ and "layer4" not in name
88
+ ):
89
+ parameter.requires_grad_(False)
90
+
91
+ return_layers = {}
92
+ for idx, layer_index in enumerate(return_interm_indices):
93
+ return_layers.update(
94
+ {"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)}
95
+ )
96
+
97
+ # if len:
98
+ # if use_stage1_feature:
99
+ # return_layers = {"layer1": "0", "layer2": "1", "layer3": "2", "layer4": "3"}
100
+ # else:
101
+ # return_layers = {"layer2": "0", "layer3": "1", "layer4": "2"}
102
+ # else:
103
+ # return_layers = {'layer4': "0"}
104
+ self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
105
+ self.num_channels = num_channels
106
+
107
+ def forward(self, tensor_list: NestedTensor):
108
+ xs = self.body(tensor_list.tensors)
109
+ out: Dict[str, NestedTensor] = {}
110
+ for name, x in xs.items():
111
+ m = tensor_list.mask
112
+ assert m is not None
113
+ mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
114
+ out[name] = NestedTensor(x, mask)
115
+ # import ipdb; ipdb.set_trace()
116
+ return out
117
+
118
+
119
+ class Backbone(BackboneBase):
120
+ """ResNet backbone with frozen BatchNorm."""
121
+
122
+ def __init__(
123
+ self,
124
+ name: str,
125
+ train_backbone: bool,
126
+ dilation: bool,
127
+ return_interm_indices: list,
128
+ batch_norm=FrozenBatchNorm2d,
129
+ ):
130
+ if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
131
+ backbone = getattr(torchvision.models, name)(
132
+ replace_stride_with_dilation=[False, False, dilation],
133
+ pretrained=is_main_process(),
134
+ norm_layer=batch_norm,
135
+ )
136
+ else:
137
+ raise NotImplementedError("Why you can get here with name {}".format(name))
138
+ # num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
139
+ assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
140
+ assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
141
+ num_channels_all = [256, 512, 1024, 2048]
142
+ num_channels = num_channels_all[4 - len(return_interm_indices) :]
143
+ super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
144
+
145
+
146
+ class Joiner(nn.Sequential):
147
+ def __init__(self, backbone, position_embedding):
148
+ super().__init__(backbone, position_embedding)
149
+
150
+ def forward(self, tensor_list: NestedTensor):
151
+ xs = self[0](tensor_list)
152
+ out: List[NestedTensor] = []
153
+ pos = []
154
+ for name, x in xs.items():
155
+ out.append(x)
156
+ # position encoding
157
+ pos.append(self[1](x).to(x.tensors.dtype))
158
+
159
+ return out, pos
160
+
161
+
162
+ def build_backbone(args):
163
+ """
164
+ Useful args:
165
+ - backbone: backbone name
166
+ - lr_backbone:
167
+ - dilation
168
+ - return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
169
+ - backbone_freeze_keywords:
170
+ - use_checkpoint: for swin only for now
171
+
172
+ """
173
+ position_embedding = build_position_encoding(args)
174
+ train_backbone = True
175
+ if not train_backbone:
176
+ raise ValueError("Please set lr_backbone > 0")
177
+ return_interm_indices = args.return_interm_indices
178
+ assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
179
+ args.backbone_freeze_keywords
180
+ use_checkpoint = getattr(args, "use_checkpoint", False)
181
+
182
+ if args.backbone in ["resnet50", "resnet101"]:
183
+ backbone = Backbone(
184
+ args.backbone,
185
+ train_backbone,
186
+ args.dilation,
187
+ return_interm_indices,
188
+ batch_norm=FrozenBatchNorm2d,
189
+ )
190
+ bb_num_channels = backbone.num_channels
191
+ elif args.backbone in [
192
+ "swin_T_224_1k",
193
+ "swin_B_224_22k",
194
+ "swin_B_384_22k",
195
+ "swin_L_224_22k",
196
+ "swin_L_384_22k",
197
+ ]:
198
+ pretrain_img_size = int(args.backbone.split("_")[-2])
199
+ backbone = build_swin_transformer(
200
+ args.backbone,
201
+ pretrain_img_size=pretrain_img_size,
202
+ out_indices=tuple(return_interm_indices),
203
+ dilation=False,
204
+ use_checkpoint=use_checkpoint,
205
+ )
206
+
207
+ bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
208
+ else:
209
+ raise NotImplementedError("Unknown backbone {}".format(args.backbone))
210
+
211
+ assert len(bb_num_channels) == len(
212
+ return_interm_indices
213
+ ), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
214
+
215
+ model = Joiner(backbone, position_embedding)
216
+ model.num_channels = bb_num_channels
217
+ assert isinstance(
218
+ bb_num_channels, List
219
+ ), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
220
+ # import ipdb; ipdb.set_trace()
221
+ return model
groundingdino/models/GroundingDINO/backbone/position_encoding.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # DINO
8
+ # Copyright (c) 2022 IDEA. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------
11
+ # Conditional DETR
12
+ # Copyright (c) 2021 Microsoft. All Rights Reserved.
13
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
14
+ # ------------------------------------------------------------------------
15
+ # Copied from DETR (https://github.com/facebookresearch/detr)
16
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
17
+ # ------------------------------------------------------------------------
18
+
19
+ """
20
+ Various positional encodings for the transformer.
21
+ """
22
+ import math
23
+
24
+ import torch
25
+ from torch import nn
26
+
27
+ from groundingdino.util.misc import NestedTensor
28
+
29
+
30
+ class PositionEmbeddingSine(nn.Module):
31
+ """
32
+ This is a more standard version of the position embedding, very similar to the one
33
+ used by the Attention is all you need paper, generalized to work on images.
34
+ """
35
+
36
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
37
+ super().__init__()
38
+ self.num_pos_feats = num_pos_feats
39
+ self.temperature = temperature
40
+ self.normalize = normalize
41
+ if scale is not None and normalize is False:
42
+ raise ValueError("normalize should be True if scale is passed")
43
+ if scale is None:
44
+ scale = 2 * math.pi
45
+ self.scale = scale
46
+
47
+ def forward(self, tensor_list: NestedTensor):
48
+ x = tensor_list.tensors
49
+ mask = tensor_list.mask
50
+ assert mask is not None
51
+ not_mask = ~mask
52
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
53
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
54
+ if self.normalize:
55
+ eps = 1e-6
56
+ # if os.environ.get("SHILONG_AMP", None) == '1':
57
+ # eps = 1e-4
58
+ # else:
59
+ # eps = 1e-6
60
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
61
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
62
+
63
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
64
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
65
+
66
+ pos_x = x_embed[:, :, :, None] / dim_t
67
+ pos_y = y_embed[:, :, :, None] / dim_t
68
+ pos_x = torch.stack(
69
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
70
+ ).flatten(3)
71
+ pos_y = torch.stack(
72
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
73
+ ).flatten(3)
74
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
75
+ return pos
76
+
77
+
78
+ class PositionEmbeddingSineHW(nn.Module):
79
+ """
80
+ This is a more standard version of the position embedding, very similar to the one
81
+ used by the Attention is all you need paper, generalized to work on images.
82
+ """
83
+
84
+ def __init__(
85
+ self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None
86
+ ):
87
+ super().__init__()
88
+ self.num_pos_feats = num_pos_feats
89
+ self.temperatureH = temperatureH
90
+ self.temperatureW = temperatureW
91
+ self.normalize = normalize
92
+ if scale is not None and normalize is False:
93
+ raise ValueError("normalize should be True if scale is passed")
94
+ if scale is None:
95
+ scale = 2 * math.pi
96
+ self.scale = scale
97
+
98
+ def forward(self, tensor_list: NestedTensor):
99
+ x = tensor_list.tensors
100
+ mask = tensor_list.mask
101
+ assert mask is not None
102
+ not_mask = ~mask
103
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
104
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
105
+
106
+ # import ipdb; ipdb.set_trace()
107
+
108
+ if self.normalize:
109
+ eps = 1e-6
110
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
111
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
112
+
113
+ dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
114
+ dim_tx = self.temperatureW ** (2 * (torch.div(dim_tx, 2, rounding_mode='floor')) / self.num_pos_feats)
115
+ pos_x = x_embed[:, :, :, None] / dim_tx
116
+
117
+ dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
118
+ dim_ty = self.temperatureH ** (2 * (torch.div(dim_ty, 2, rounding_mode='floor')) / self.num_pos_feats)
119
+ pos_y = y_embed[:, :, :, None] / dim_ty
120
+
121
+ pos_x = torch.stack(
122
+ (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4
123
+ ).flatten(3)
124
+ pos_y = torch.stack(
125
+ (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4
126
+ ).flatten(3)
127
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
128
+
129
+ # import ipdb; ipdb.set_trace()
130
+
131
+ return pos
132
+
133
+
134
+ class PositionEmbeddingLearned(nn.Module):
135
+ """
136
+ Absolute pos embedding, learned.
137
+ """
138
+
139
+ def __init__(self, num_pos_feats=256):
140
+ super().__init__()
141
+ self.row_embed = nn.Embedding(50, num_pos_feats)
142
+ self.col_embed = nn.Embedding(50, num_pos_feats)
143
+ self.reset_parameters()
144
+
145
+ def reset_parameters(self):
146
+ nn.init.uniform_(self.row_embed.weight)
147
+ nn.init.uniform_(self.col_embed.weight)
148
+
149
+ def forward(self, tensor_list: NestedTensor):
150
+ x = tensor_list.tensors
151
+ h, w = x.shape[-2:]
152
+ i = torch.arange(w, device=x.device)
153
+ j = torch.arange(h, device=x.device)
154
+ x_emb = self.col_embed(i)
155
+ y_emb = self.row_embed(j)
156
+ pos = (
157
+ torch.cat(
158
+ [
159
+ x_emb.unsqueeze(0).repeat(h, 1, 1),
160
+ y_emb.unsqueeze(1).repeat(1, w, 1),
161
+ ],
162
+ dim=-1,
163
+ )
164
+ .permute(2, 0, 1)
165
+ .unsqueeze(0)
166
+ .repeat(x.shape[0], 1, 1, 1)
167
+ )
168
+ return pos
169
+
170
+
171
+ def build_position_encoding(args):
172
+ N_steps = args.hidden_dim // 2
173
+ if args.position_embedding in ("v2", "sine"):
174
+ # TODO find a better way of exposing other arguments
175
+ position_embedding = PositionEmbeddingSineHW(
176
+ N_steps,
177
+ temperatureH=args.pe_temperatureH,
178
+ temperatureW=args.pe_temperatureW,
179
+ normalize=True,
180
+ )
181
+ elif args.position_embedding in ("v3", "learned"):
182
+ position_embedding = PositionEmbeddingLearned(N_steps)
183
+ else:
184
+ raise ValueError(f"not supported {args.position_embedding}")
185
+
186
+ return position_embedding
groundingdino/models/GroundingDINO/backbone/swin_transformer.py ADDED
@@ -0,0 +1,802 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # DINO
8
+ # Copyright (c) 2022 IDEA. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # --------------------------------------------------------
11
+ # modified from https://github.com/SwinTransformer/Swin-Transformer-Object-Detection/blob/master/mmdet/models/backbones/swin_transformer.py
12
+ # --------------------------------------------------------
13
+
14
+ import numpy as np
15
+ import torch
16
+ import torch.nn as nn
17
+ import torch.nn.functional as F
18
+ import torch.utils.checkpoint as checkpoint
19
+ from timm.models.layers import DropPath, to_2tuple, trunc_normal_
20
+
21
+ from groundingdino.util.misc import NestedTensor
22
+
23
+
24
+ class Mlp(nn.Module):
25
+ """Multilayer perceptron."""
26
+
27
+ def __init__(
28
+ self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0
29
+ ):
30
+ super().__init__()
31
+ out_features = out_features or in_features
32
+ hidden_features = hidden_features or in_features
33
+ self.fc1 = nn.Linear(in_features, hidden_features)
34
+ self.act = act_layer()
35
+ self.fc2 = nn.Linear(hidden_features, out_features)
36
+ self.drop = nn.Dropout(drop)
37
+
38
+ def forward(self, x):
39
+ x = self.fc1(x)
40
+ x = self.act(x)
41
+ x = self.drop(x)
42
+ x = self.fc2(x)
43
+ x = self.drop(x)
44
+ return x
45
+
46
+
47
+ def window_partition(x, window_size):
48
+ """
49
+ Args:
50
+ x: (B, H, W, C)
51
+ window_size (int): window size
52
+ Returns:
53
+ windows: (num_windows*B, window_size, window_size, C)
54
+ """
55
+ B, H, W, C = x.shape
56
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
57
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
58
+ return windows
59
+
60
+
61
+ def window_reverse(windows, window_size, H, W):
62
+ """
63
+ Args:
64
+ windows: (num_windows*B, window_size, window_size, C)
65
+ window_size (int): Window size
66
+ H (int): Height of image
67
+ W (int): Width of image
68
+ Returns:
69
+ x: (B, H, W, C)
70
+ """
71
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
72
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
73
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
74
+ return x
75
+
76
+
77
+ class WindowAttention(nn.Module):
78
+ """Window based multi-head self attention (W-MSA) module with relative position bias.
79
+ It supports both of shifted and non-shifted window.
80
+ Args:
81
+ dim (int): Number of input channels.
82
+ window_size (tuple[int]): The height and width of the window.
83
+ num_heads (int): Number of attention heads.
84
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
85
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
86
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
87
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
88
+ """
89
+
90
+ def __init__(
91
+ self,
92
+ dim,
93
+ window_size,
94
+ num_heads,
95
+ qkv_bias=True,
96
+ qk_scale=None,
97
+ attn_drop=0.0,
98
+ proj_drop=0.0,
99
+ ):
100
+
101
+ super().__init__()
102
+ self.dim = dim
103
+ self.window_size = window_size # Wh, Ww
104
+ self.num_heads = num_heads
105
+ head_dim = dim // num_heads
106
+ self.scale = qk_scale or head_dim**-0.5
107
+
108
+ # define a parameter table of relative position bias
109
+ self.relative_position_bias_table = nn.Parameter(
110
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)
111
+ ) # 2*Wh-1 * 2*Ww-1, nH
112
+
113
+ # get pair-wise relative position index for each token inside the window
114
+ coords_h = torch.arange(self.window_size[0])
115
+ coords_w = torch.arange(self.window_size[1])
116
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
117
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
118
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
119
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
120
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
121
+ relative_coords[:, :, 1] += self.window_size[1] - 1
122
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
123
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
124
+ self.register_buffer("relative_position_index", relative_position_index)
125
+
126
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
127
+ self.attn_drop = nn.Dropout(attn_drop)
128
+ self.proj = nn.Linear(dim, dim)
129
+ self.proj_drop = nn.Dropout(proj_drop)
130
+
131
+ trunc_normal_(self.relative_position_bias_table, std=0.02)
132
+ self.softmax = nn.Softmax(dim=-1)
133
+
134
+ def forward(self, x, mask=None):
135
+ """Forward function.
136
+ Args:
137
+ x: input features with shape of (num_windows*B, N, C)
138
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
139
+ """
140
+ B_, N, C = x.shape
141
+ qkv = (
142
+ self.qkv(x)
143
+ .reshape(B_, N, 3, self.num_heads, C // self.num_heads)
144
+ .permute(2, 0, 3, 1, 4)
145
+ )
146
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
147
+
148
+ q = q * self.scale
149
+ attn = q @ k.transpose(-2, -1)
150
+
151
+ relative_position_bias = self.relative_position_bias_table[
152
+ self.relative_position_index.view(-1)
153
+ ].view(
154
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1
155
+ ) # Wh*Ww,Wh*Ww,nH
156
+ relative_position_bias = relative_position_bias.permute(
157
+ 2, 0, 1
158
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
159
+ attn = attn + relative_position_bias.unsqueeze(0)
160
+
161
+ if mask is not None:
162
+ nW = mask.shape[0]
163
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
164
+ attn = attn.view(-1, self.num_heads, N, N)
165
+ attn = self.softmax(attn)
166
+ else:
167
+ attn = self.softmax(attn)
168
+
169
+ attn = self.attn_drop(attn)
170
+
171
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
172
+ x = self.proj(x)
173
+ x = self.proj_drop(x)
174
+ return x
175
+
176
+
177
+ class SwinTransformerBlock(nn.Module):
178
+ """Swin Transformer Block.
179
+ Args:
180
+ dim (int): Number of input channels.
181
+ num_heads (int): Number of attention heads.
182
+ window_size (int): Window size.
183
+ shift_size (int): Shift size for SW-MSA.
184
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
185
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
186
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
187
+ drop (float, optional): Dropout rate. Default: 0.0
188
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
189
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
190
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
191
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
192
+ """
193
+
194
+ def __init__(
195
+ self,
196
+ dim,
197
+ num_heads,
198
+ window_size=7,
199
+ shift_size=0,
200
+ mlp_ratio=4.0,
201
+ qkv_bias=True,
202
+ qk_scale=None,
203
+ drop=0.0,
204
+ attn_drop=0.0,
205
+ drop_path=0.0,
206
+ act_layer=nn.GELU,
207
+ norm_layer=nn.LayerNorm,
208
+ ):
209
+ super().__init__()
210
+ self.dim = dim
211
+ self.num_heads = num_heads
212
+ self.window_size = window_size
213
+ self.shift_size = shift_size
214
+ self.mlp_ratio = mlp_ratio
215
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
216
+
217
+ self.norm1 = norm_layer(dim)
218
+ self.attn = WindowAttention(
219
+ dim,
220
+ window_size=to_2tuple(self.window_size),
221
+ num_heads=num_heads,
222
+ qkv_bias=qkv_bias,
223
+ qk_scale=qk_scale,
224
+ attn_drop=attn_drop,
225
+ proj_drop=drop,
226
+ )
227
+
228
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
229
+ self.norm2 = norm_layer(dim)
230
+ mlp_hidden_dim = int(dim * mlp_ratio)
231
+ self.mlp = Mlp(
232
+ in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop
233
+ )
234
+
235
+ self.H = None
236
+ self.W = None
237
+
238
+ def forward(self, x, mask_matrix):
239
+ """Forward function.
240
+ Args:
241
+ x: Input feature, tensor size (B, H*W, C).
242
+ H, W: Spatial resolution of the input feature.
243
+ mask_matrix: Attention mask for cyclic shift.
244
+ """
245
+ B, L, C = x.shape
246
+ H, W = self.H, self.W
247
+ assert L == H * W, "input feature has wrong size"
248
+
249
+ shortcut = x
250
+ x = self.norm1(x)
251
+ x = x.view(B, H, W, C)
252
+
253
+ # pad feature maps to multiples of window size
254
+ pad_l = pad_t = 0
255
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
256
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
257
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
258
+ _, Hp, Wp, _ = x.shape
259
+
260
+ # cyclic shift
261
+ if self.shift_size > 0:
262
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
263
+ attn_mask = mask_matrix
264
+ else:
265
+ shifted_x = x
266
+ attn_mask = None
267
+
268
+ # partition windows
269
+ x_windows = window_partition(
270
+ shifted_x, self.window_size
271
+ ) # nW*B, window_size, window_size, C
272
+ x_windows = x_windows.view(
273
+ -1, self.window_size * self.window_size, C
274
+ ) # nW*B, window_size*window_size, C
275
+
276
+ # W-MSA/SW-MSA
277
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
278
+
279
+ # merge windows
280
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
281
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
282
+
283
+ # reverse cyclic shift
284
+ if self.shift_size > 0:
285
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
286
+ else:
287
+ x = shifted_x
288
+
289
+ if pad_r > 0 or pad_b > 0:
290
+ x = x[:, :H, :W, :].contiguous()
291
+
292
+ x = x.view(B, H * W, C)
293
+
294
+ # FFN
295
+ x = shortcut + self.drop_path(x)
296
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
297
+
298
+ return x
299
+
300
+
301
+ class PatchMerging(nn.Module):
302
+ """Patch Merging Layer
303
+ Args:
304
+ dim (int): Number of input channels.
305
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
306
+ """
307
+
308
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
309
+ super().__init__()
310
+ self.dim = dim
311
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
312
+ self.norm = norm_layer(4 * dim)
313
+
314
+ def forward(self, x, H, W):
315
+ """Forward function.
316
+ Args:
317
+ x: Input feature, tensor size (B, H*W, C).
318
+ H, W: Spatial resolution of the input feature.
319
+ """
320
+ B, L, C = x.shape
321
+ assert L == H * W, "input feature has wrong size"
322
+
323
+ x = x.view(B, H, W, C)
324
+
325
+ # padding
326
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
327
+ if pad_input:
328
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
329
+
330
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
331
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
332
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
333
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
334
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
335
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
336
+
337
+ x = self.norm(x)
338
+ x = self.reduction(x)
339
+
340
+ return x
341
+
342
+
343
+ class BasicLayer(nn.Module):
344
+ """A basic Swin Transformer layer for one stage.
345
+ Args:
346
+ dim (int): Number of feature channels
347
+ depth (int): Depths of this stage.
348
+ num_heads (int): Number of attention head.
349
+ window_size (int): Local window size. Default: 7.
350
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
351
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
352
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
353
+ drop (float, optional): Dropout rate. Default: 0.0
354
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
355
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
356
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
357
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
358
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
359
+ """
360
+
361
+ def __init__(
362
+ self,
363
+ dim,
364
+ depth,
365
+ num_heads,
366
+ window_size=7,
367
+ mlp_ratio=4.0,
368
+ qkv_bias=True,
369
+ qk_scale=None,
370
+ drop=0.0,
371
+ attn_drop=0.0,
372
+ drop_path=0.0,
373
+ norm_layer=nn.LayerNorm,
374
+ downsample=None,
375
+ use_checkpoint=False,
376
+ ):
377
+ super().__init__()
378
+ self.window_size = window_size
379
+ self.shift_size = window_size // 2
380
+ self.depth = depth
381
+ self.use_checkpoint = use_checkpoint
382
+
383
+ # build blocks
384
+ self.blocks = nn.ModuleList(
385
+ [
386
+ SwinTransformerBlock(
387
+ dim=dim,
388
+ num_heads=num_heads,
389
+ window_size=window_size,
390
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
391
+ mlp_ratio=mlp_ratio,
392
+ qkv_bias=qkv_bias,
393
+ qk_scale=qk_scale,
394
+ drop=drop,
395
+ attn_drop=attn_drop,
396
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
397
+ norm_layer=norm_layer,
398
+ )
399
+ for i in range(depth)
400
+ ]
401
+ )
402
+
403
+ # patch merging layer
404
+ if downsample is not None:
405
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
406
+ else:
407
+ self.downsample = None
408
+
409
+ def forward(self, x, H, W):
410
+ """Forward function.
411
+ Args:
412
+ x: Input feature, tensor size (B, H*W, C).
413
+ H, W: Spatial resolution of the input feature.
414
+ """
415
+
416
+ # calculate attention mask for SW-MSA
417
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
418
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
419
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
420
+ h_slices = (
421
+ slice(0, -self.window_size),
422
+ slice(-self.window_size, -self.shift_size),
423
+ slice(-self.shift_size, None),
424
+ )
425
+ w_slices = (
426
+ slice(0, -self.window_size),
427
+ slice(-self.window_size, -self.shift_size),
428
+ slice(-self.shift_size, None),
429
+ )
430
+ cnt = 0
431
+ for h in h_slices:
432
+ for w in w_slices:
433
+ img_mask[:, h, w, :] = cnt
434
+ cnt += 1
435
+
436
+ mask_windows = window_partition(
437
+ img_mask, self.window_size
438
+ ) # nW, window_size, window_size, 1
439
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
440
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
441
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(
442
+ attn_mask == 0, float(0.0)
443
+ )
444
+
445
+ for blk in self.blocks:
446
+ blk.H, blk.W = H, W
447
+ if self.use_checkpoint:
448
+ x = checkpoint.checkpoint(blk, x, attn_mask)
449
+ else:
450
+ x = blk(x, attn_mask)
451
+ if self.downsample is not None:
452
+ x_down = self.downsample(x, H, W)
453
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
454
+ return x, H, W, x_down, Wh, Ww
455
+ else:
456
+ return x, H, W, x, H, W
457
+
458
+
459
+ class PatchEmbed(nn.Module):
460
+ """Image to Patch Embedding
461
+ Args:
462
+ patch_size (int): Patch token size. Default: 4.
463
+ in_chans (int): Number of input image channels. Default: 3.
464
+ embed_dim (int): Number of linear projection output channels. Default: 96.
465
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
466
+ """
467
+
468
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
469
+ super().__init__()
470
+ patch_size = to_2tuple(patch_size)
471
+ self.patch_size = patch_size
472
+
473
+ self.in_chans = in_chans
474
+ self.embed_dim = embed_dim
475
+
476
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
477
+ if norm_layer is not None:
478
+ self.norm = norm_layer(embed_dim)
479
+ else:
480
+ self.norm = None
481
+
482
+ def forward(self, x):
483
+ """Forward function."""
484
+ # padding
485
+ _, _, H, W = x.size()
486
+ if W % self.patch_size[1] != 0:
487
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
488
+ if H % self.patch_size[0] != 0:
489
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
490
+
491
+ x = self.proj(x) # B C Wh Ww
492
+ if self.norm is not None:
493
+ Wh, Ww = x.size(2), x.size(3)
494
+ x = x.flatten(2).transpose(1, 2)
495
+ x = self.norm(x)
496
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
497
+
498
+ return x
499
+
500
+
501
+ class SwinTransformer(nn.Module):
502
+ """Swin Transformer backbone.
503
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
504
+ https://arxiv.org/pdf/2103.14030
505
+ Args:
506
+ pretrain_img_size (int): Input image size for training the pretrained model,
507
+ used in absolute postion embedding. Default 224.
508
+ patch_size (int | tuple(int)): Patch size. Default: 4.
509
+ in_chans (int): Number of input image channels. Default: 3.
510
+ embed_dim (int): Number of linear projection output channels. Default: 96.
511
+ depths (tuple[int]): Depths of each Swin Transformer stage.
512
+ num_heads (tuple[int]): Number of attention head of each stage.
513
+ window_size (int): Window size. Default: 7.
514
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
515
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
516
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
517
+ drop_rate (float): Dropout rate.
518
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
519
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
520
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
521
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
522
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
523
+ out_indices (Sequence[int]): Output from which stages.
524
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
525
+ -1 means not freezing any parameters.
526
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
527
+ dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
528
+ """
529
+
530
+ def __init__(
531
+ self,
532
+ pretrain_img_size=224,
533
+ patch_size=4,
534
+ in_chans=3,
535
+ embed_dim=96,
536
+ depths=[2, 2, 6, 2],
537
+ num_heads=[3, 6, 12, 24],
538
+ window_size=7,
539
+ mlp_ratio=4.0,
540
+ qkv_bias=True,
541
+ qk_scale=None,
542
+ drop_rate=0.0,
543
+ attn_drop_rate=0.0,
544
+ drop_path_rate=0.2,
545
+ norm_layer=nn.LayerNorm,
546
+ ape=False,
547
+ patch_norm=True,
548
+ out_indices=(0, 1, 2, 3),
549
+ frozen_stages=-1,
550
+ dilation=False,
551
+ use_checkpoint=False,
552
+ ):
553
+ super().__init__()
554
+
555
+ self.pretrain_img_size = pretrain_img_size
556
+ self.num_layers = len(depths)
557
+ self.embed_dim = embed_dim
558
+ self.ape = ape
559
+ self.patch_norm = patch_norm
560
+ self.out_indices = out_indices
561
+ self.frozen_stages = frozen_stages
562
+ self.dilation = dilation
563
+
564
+ # if use_checkpoint:
565
+ # print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
566
+
567
+ # split image into non-overlapping patches
568
+ self.patch_embed = PatchEmbed(
569
+ patch_size=patch_size,
570
+ in_chans=in_chans,
571
+ embed_dim=embed_dim,
572
+ norm_layer=norm_layer if self.patch_norm else None,
573
+ )
574
+
575
+ # absolute position embedding
576
+ if self.ape:
577
+ pretrain_img_size = to_2tuple(pretrain_img_size)
578
+ patch_size = to_2tuple(patch_size)
579
+ patches_resolution = [
580
+ pretrain_img_size[0] // patch_size[0],
581
+ pretrain_img_size[1] // patch_size[1],
582
+ ]
583
+
584
+ self.absolute_pos_embed = nn.Parameter(
585
+ torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1])
586
+ )
587
+ trunc_normal_(self.absolute_pos_embed, std=0.02)
588
+
589
+ self.pos_drop = nn.Dropout(p=drop_rate)
590
+
591
+ # stochastic depth
592
+ dpr = [
593
+ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
594
+ ] # stochastic depth decay rule
595
+
596
+ # build layers
597
+ self.layers = nn.ModuleList()
598
+ # prepare downsample list
599
+ downsamplelist = [PatchMerging for i in range(self.num_layers)]
600
+ downsamplelist[-1] = None
601
+ num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
602
+ if self.dilation:
603
+ downsamplelist[-2] = None
604
+ num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
605
+ for i_layer in range(self.num_layers):
606
+ layer = BasicLayer(
607
+ # dim=int(embed_dim * 2 ** i_layer),
608
+ dim=num_features[i_layer],
609
+ depth=depths[i_layer],
610
+ num_heads=num_heads[i_layer],
611
+ window_size=window_size,
612
+ mlp_ratio=mlp_ratio,
613
+ qkv_bias=qkv_bias,
614
+ qk_scale=qk_scale,
615
+ drop=drop_rate,
616
+ attn_drop=attn_drop_rate,
617
+ drop_path=dpr[sum(depths[:i_layer]) : sum(depths[: i_layer + 1])],
618
+ norm_layer=norm_layer,
619
+ # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
620
+ downsample=downsamplelist[i_layer],
621
+ use_checkpoint=use_checkpoint,
622
+ )
623
+ self.layers.append(layer)
624
+
625
+ # num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
626
+ self.num_features = num_features
627
+
628
+ # add a norm layer for each output
629
+ for i_layer in out_indices:
630
+ layer = norm_layer(num_features[i_layer])
631
+ layer_name = f"norm{i_layer}"
632
+ self.add_module(layer_name, layer)
633
+
634
+ self._freeze_stages()
635
+
636
+ def _freeze_stages(self):
637
+ if self.frozen_stages >= 0:
638
+ self.patch_embed.eval()
639
+ for param in self.patch_embed.parameters():
640
+ param.requires_grad = False
641
+
642
+ if self.frozen_stages >= 1 and self.ape:
643
+ self.absolute_pos_embed.requires_grad = False
644
+
645
+ if self.frozen_stages >= 2:
646
+ self.pos_drop.eval()
647
+ for i in range(0, self.frozen_stages - 1):
648
+ m = self.layers[i]
649
+ m.eval()
650
+ for param in m.parameters():
651
+ param.requires_grad = False
652
+
653
+ # def init_weights(self, pretrained=None):
654
+ # """Initialize the weights in backbone.
655
+ # Args:
656
+ # pretrained (str, optional): Path to pre-trained weights.
657
+ # Defaults to None.
658
+ # """
659
+
660
+ # def _init_weights(m):
661
+ # if isinstance(m, nn.Linear):
662
+ # trunc_normal_(m.weight, std=.02)
663
+ # if isinstance(m, nn.Linear) and m.bias is not None:
664
+ # nn.init.constant_(m.bias, 0)
665
+ # elif isinstance(m, nn.LayerNorm):
666
+ # nn.init.constant_(m.bias, 0)
667
+ # nn.init.constant_(m.weight, 1.0)
668
+
669
+ # if isinstance(pretrained, str):
670
+ # self.apply(_init_weights)
671
+ # logger = get_root_logger()
672
+ # load_checkpoint(self, pretrained, strict=False, logger=logger)
673
+ # elif pretrained is None:
674
+ # self.apply(_init_weights)
675
+ # else:
676
+ # raise TypeError('pretrained must be a str or None')
677
+
678
+ def forward_raw(self, x):
679
+ """Forward function."""
680
+ x = self.patch_embed(x)
681
+
682
+ Wh, Ww = x.size(2), x.size(3)
683
+ if self.ape:
684
+ # interpolate the position embedding to the corresponding size
685
+ absolute_pos_embed = F.interpolate(
686
+ self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
687
+ )
688
+ x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
689
+ else:
690
+ x = x.flatten(2).transpose(1, 2)
691
+ x = self.pos_drop(x)
692
+
693
+ outs = []
694
+ for i in range(self.num_layers):
695
+ layer = self.layers[i]
696
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
697
+ # import ipdb; ipdb.set_trace()
698
+
699
+ if i in self.out_indices:
700
+ norm_layer = getattr(self, f"norm{i}")
701
+ x_out = norm_layer(x_out)
702
+
703
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
704
+ outs.append(out)
705
+ # in:
706
+ # torch.Size([2, 3, 1024, 1024])
707
+ # outs:
708
+ # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
709
+ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
710
+ return tuple(outs)
711
+
712
+ def forward(self, tensor_list: NestedTensor):
713
+ x = tensor_list.tensors
714
+
715
+ """Forward function."""
716
+ x = self.patch_embed(x)
717
+
718
+ Wh, Ww = x.size(2), x.size(3)
719
+ if self.ape:
720
+ # interpolate the position embedding to the corresponding size
721
+ absolute_pos_embed = F.interpolate(
722
+ self.absolute_pos_embed, size=(Wh, Ww), mode="bicubic"
723
+ )
724
+ x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
725
+ else:
726
+ x = x.flatten(2).transpose(1, 2)
727
+ x = self.pos_drop(x)
728
+
729
+ outs = []
730
+ for i in range(self.num_layers):
731
+ layer = self.layers[i]
732
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
733
+
734
+ if i in self.out_indices:
735
+ norm_layer = getattr(self, f"norm{i}")
736
+ x_out = norm_layer(x_out)
737
+
738
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
739
+ outs.append(out)
740
+ # in:
741
+ # torch.Size([2, 3, 1024, 1024])
742
+ # out:
743
+ # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
744
+ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
745
+
746
+ # collect for nesttensors
747
+ outs_dict = {}
748
+ for idx, out_i in enumerate(outs):
749
+ m = tensor_list.mask
750
+ assert m is not None
751
+ mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
752
+ outs_dict[idx] = NestedTensor(out_i, mask)
753
+
754
+ return outs_dict
755
+
756
+ def train(self, mode=True):
757
+ """Convert the model into training mode while keep layers freezed."""
758
+ super(SwinTransformer, self).train(mode)
759
+ self._freeze_stages()
760
+
761
+
762
+ def build_swin_transformer(modelname, pretrain_img_size, **kw):
763
+ assert modelname in [
764
+ "swin_T_224_1k",
765
+ "swin_B_224_22k",
766
+ "swin_B_384_22k",
767
+ "swin_L_224_22k",
768
+ "swin_L_384_22k",
769
+ ]
770
+
771
+ model_para_dict = {
772
+ "swin_T_224_1k": dict(
773
+ embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7
774
+ ),
775
+ "swin_B_224_22k": dict(
776
+ embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=7
777
+ ),
778
+ "swin_B_384_22k": dict(
779
+ embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12
780
+ ),
781
+ "swin_L_224_22k": dict(
782
+ embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=7
783
+ ),
784
+ "swin_L_384_22k": dict(
785
+ embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12
786
+ ),
787
+ }
788
+ kw_cgf = model_para_dict[modelname]
789
+ kw_cgf.update(kw)
790
+ model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
791
+ return model
792
+
793
+
794
+ if __name__ == "__main__":
795
+ model = build_swin_transformer("swin_L_384_22k", 384, dilation=True)
796
+ x = torch.rand(2, 3, 1024, 1024)
797
+ y = model.forward_raw(x)
798
+ import ipdb
799
+
800
+ ipdb.set_trace()
801
+ x = torch.rand(2, 3, 384, 384)
802
+ y = model.forward_raw(x)
groundingdino/models/GroundingDINO/bertwarper.py ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint as checkpoint
11
+ from torch import Tensor, nn
12
+ from torchvision.ops.boxes import nms
13
+ from transformers import BertConfig, BertModel, BertPreTrainedModel
14
+ from transformers.modeling_outputs import BaseModelOutputWithPoolingAndCrossAttentions
15
+
16
+
17
+ class BertModelWarper(nn.Module):
18
+ def __init__(self, bert_model):
19
+ super().__init__()
20
+ # self.bert = bert_modelc
21
+
22
+ self.config = bert_model.config
23
+ self.embeddings = bert_model.embeddings
24
+ self.encoder = bert_model.encoder
25
+ self.pooler = bert_model.pooler
26
+
27
+ self.get_extended_attention_mask = bert_model.get_extended_attention_mask
28
+ self.invert_attention_mask = bert_model.invert_attention_mask
29
+ self.get_head_mask = bert_model.get_head_mask
30
+
31
+ def forward(
32
+ self,
33
+ input_ids=None,
34
+ attention_mask=None,
35
+ token_type_ids=None,
36
+ position_ids=None,
37
+ head_mask=None,
38
+ inputs_embeds=None,
39
+ encoder_hidden_states=None,
40
+ encoder_attention_mask=None,
41
+ past_key_values=None,
42
+ use_cache=None,
43
+ output_attentions=None,
44
+ output_hidden_states=None,
45
+ return_dict=None,
46
+ ):
47
+ r"""
48
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
49
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
50
+ the model is configured as a decoder.
51
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
52
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
53
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
54
+
55
+ - 1 for tokens that are **not masked**,
56
+ - 0 for tokens that are **masked**.
57
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
58
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
59
+
60
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
61
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
62
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
63
+ use_cache (:obj:`bool`, `optional`):
64
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
65
+ decoding (see :obj:`past_key_values`).
66
+ """
67
+ output_attentions = (
68
+ output_attentions if output_attentions is not None else self.config.output_attentions
69
+ )
70
+ output_hidden_states = (
71
+ output_hidden_states
72
+ if output_hidden_states is not None
73
+ else self.config.output_hidden_states
74
+ )
75
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
76
+
77
+ if self.config.is_decoder:
78
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
79
+ else:
80
+ use_cache = False
81
+
82
+ if input_ids is not None and inputs_embeds is not None:
83
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
84
+ elif input_ids is not None:
85
+ input_shape = input_ids.size()
86
+ batch_size, seq_length = input_shape
87
+ elif inputs_embeds is not None:
88
+ input_shape = inputs_embeds.size()[:-1]
89
+ batch_size, seq_length = input_shape
90
+ else:
91
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
92
+
93
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
94
+
95
+ # past_key_values_length
96
+ past_key_values_length = (
97
+ past_key_values[0][0].shape[2] if past_key_values is not None else 0
98
+ )
99
+
100
+ if attention_mask is None:
101
+ attention_mask = torch.ones(
102
+ ((batch_size, seq_length + past_key_values_length)), device=device
103
+ )
104
+ if token_type_ids is None:
105
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
106
+
107
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
108
+ # ourselves in which case we just need to make it broadcastable to all heads.
109
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(
110
+ attention_mask, input_shape, device
111
+ )
112
+
113
+ # If a 2D or 3D attention mask is provided for the cross-attention
114
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
115
+ if self.config.is_decoder and encoder_hidden_states is not None:
116
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
117
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
118
+ if encoder_attention_mask is None:
119
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
120
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
121
+ else:
122
+ encoder_extended_attention_mask = None
123
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
124
+ # import ipdb; ipdb.set_trace()
125
+
126
+ # Prepare head mask if needed
127
+ # 1.0 in head_mask indicate we keep the head
128
+ # attention_probs has shape bsz x n_heads x N x N
129
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
130
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
131
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
132
+
133
+ embedding_output = self.embeddings(
134
+ input_ids=input_ids,
135
+ position_ids=position_ids,
136
+ token_type_ids=token_type_ids,
137
+ inputs_embeds=inputs_embeds,
138
+ past_key_values_length=past_key_values_length,
139
+ )
140
+
141
+ encoder_outputs = self.encoder(
142
+ embedding_output,
143
+ attention_mask=extended_attention_mask,
144
+ head_mask=head_mask,
145
+ encoder_hidden_states=encoder_hidden_states,
146
+ encoder_attention_mask=encoder_extended_attention_mask,
147
+ past_key_values=past_key_values,
148
+ use_cache=use_cache,
149
+ output_attentions=output_attentions,
150
+ output_hidden_states=output_hidden_states,
151
+ return_dict=return_dict,
152
+ )
153
+ sequence_output = encoder_outputs[0]
154
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
155
+
156
+ if not return_dict:
157
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
158
+
159
+ return BaseModelOutputWithPoolingAndCrossAttentions(
160
+ last_hidden_state=sequence_output,
161
+ pooler_output=pooled_output,
162
+ past_key_values=encoder_outputs.past_key_values,
163
+ hidden_states=encoder_outputs.hidden_states,
164
+ attentions=encoder_outputs.attentions,
165
+ cross_attentions=encoder_outputs.cross_attentions,
166
+ )
167
+
168
+
169
+ class TextEncoderShell(nn.Module):
170
+ def __init__(self, text_encoder):
171
+ super().__init__()
172
+ self.text_encoder = text_encoder
173
+ self.config = self.text_encoder.config
174
+
175
+ def forward(self, **kw):
176
+ # feed into text encoder
177
+ return self.text_encoder(**kw)
178
+
179
+
180
+ def generate_masks_with_special_tokens(tokenized, special_tokens_list, tokenizer):
181
+ """Generate attention mask between each pair of special tokens
182
+ Args:
183
+ input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
184
+ special_tokens_mask (list): special tokens mask.
185
+ Returns:
186
+ torch.Tensor: attention mask between each special tokens.
187
+ """
188
+ input_ids = tokenized["input_ids"]
189
+ bs, num_token = input_ids.shape
190
+ # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
191
+ special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
192
+ for special_token in special_tokens_list:
193
+ special_tokens_mask |= input_ids == special_token
194
+
195
+ # idxs: each row is a list of indices of special tokens
196
+ idxs = torch.nonzero(special_tokens_mask)
197
+
198
+ # generate attention mask and positional ids
199
+ attention_mask = (
200
+ torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
201
+ )
202
+ position_ids = torch.zeros((bs, num_token), device=input_ids.device)
203
+ previous_col = 0
204
+ for i in range(idxs.shape[0]):
205
+ row, col = idxs[i]
206
+ if (col == 0) or (col == num_token - 1):
207
+ attention_mask[row, col, col] = True
208
+ position_ids[row, col] = 0
209
+ else:
210
+ attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
211
+ position_ids[row, previous_col + 1 : col + 1] = torch.arange(
212
+ 0, col - previous_col, device=input_ids.device
213
+ )
214
+
215
+ previous_col = col
216
+
217
+ # # padding mask
218
+ # padding_mask = tokenized['attention_mask']
219
+ # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
220
+
221
+ return attention_mask, position_ids.to(torch.long)
222
+
223
+
224
+ def generate_masks_with_special_tokens_and_transfer_map(tokenized, special_tokens_list, tokenizer):
225
+ """Generate attention mask between each pair of special tokens
226
+ Args:
227
+ input_ids (torch.Tensor): input ids. Shape: [bs, num_token]
228
+ special_tokens_mask (list): special tokens mask.
229
+ Returns:
230
+ torch.Tensor: attention mask between each special tokens.
231
+ """
232
+ input_ids = tokenized["input_ids"]
233
+ bs, num_token = input_ids.shape
234
+ # special_tokens_mask: bs, num_token. 1 for special tokens. 0 for normal tokens
235
+ special_tokens_mask = torch.zeros((bs, num_token), device=input_ids.device).bool()
236
+ for special_token in special_tokens_list:
237
+ special_tokens_mask |= input_ids == special_token
238
+
239
+ # idxs: each row is a list of indices of special tokens
240
+ idxs = torch.nonzero(special_tokens_mask)
241
+
242
+ # generate attention mask and positional ids
243
+ attention_mask = (
244
+ torch.eye(num_token, device=input_ids.device).bool().unsqueeze(0).repeat(bs, 1, 1)
245
+ )
246
+ position_ids = torch.zeros((bs, num_token), device=input_ids.device)
247
+ cate_to_token_mask_list = [[] for _ in range(bs)]
248
+ previous_col = 0
249
+ for i in range(idxs.shape[0]):
250
+ row, col = idxs[i]
251
+ if (col == 0) or (col == num_token - 1):
252
+ attention_mask[row, col, col] = True
253
+ position_ids[row, col] = 0
254
+ else:
255
+ attention_mask[row, previous_col + 1 : col + 1, previous_col + 1 : col + 1] = True
256
+ position_ids[row, previous_col + 1 : col + 1] = torch.arange(
257
+ 0, col - previous_col, device=input_ids.device
258
+ )
259
+ c2t_maski = torch.zeros((num_token), device=input_ids.device).bool()
260
+ c2t_maski[previous_col + 1 : col] = True
261
+ cate_to_token_mask_list[row].append(c2t_maski)
262
+ previous_col = col
263
+
264
+ cate_to_token_mask_list = [
265
+ torch.stack(cate_to_token_mask_listi, dim=0)
266
+ for cate_to_token_mask_listi in cate_to_token_mask_list
267
+ ]
268
+
269
+ # # padding mask
270
+ # padding_mask = tokenized['attention_mask']
271
+ # attention_mask = attention_mask & padding_mask.unsqueeze(1).bool() & padding_mask.unsqueeze(2).bool()
272
+
273
+ return attention_mask, position_ids.to(torch.long), cate_to_token_mask_list
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn.h ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #pragma once
12
+
13
+ #include "ms_deform_attn_cpu.h"
14
+
15
+ #ifdef WITH_CUDA
16
+ #include "ms_deform_attn_cuda.h"
17
+ #endif
18
+
19
+ namespace groundingdino {
20
+
21
+ at::Tensor
22
+ ms_deform_attn_forward(
23
+ const at::Tensor &value,
24
+ const at::Tensor &spatial_shapes,
25
+ const at::Tensor &level_start_index,
26
+ const at::Tensor &sampling_loc,
27
+ const at::Tensor &attn_weight,
28
+ const int im2col_step)
29
+ {
30
+ if (value.type().is_cuda())
31
+ {
32
+ #ifdef WITH_CUDA
33
+ return ms_deform_attn_cuda_forward(
34
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
35
+ #else
36
+ AT_ERROR("Not compiled with GPU support");
37
+ #endif
38
+ }
39
+ AT_ERROR("Not implemented on the CPU");
40
+ }
41
+
42
+ std::vector<at::Tensor>
43
+ ms_deform_attn_backward(
44
+ const at::Tensor &value,
45
+ const at::Tensor &spatial_shapes,
46
+ const at::Tensor &level_start_index,
47
+ const at::Tensor &sampling_loc,
48
+ const at::Tensor &attn_weight,
49
+ const at::Tensor &grad_output,
50
+ const int im2col_step)
51
+ {
52
+ if (value.type().is_cuda())
53
+ {
54
+ #ifdef WITH_CUDA
55
+ return ms_deform_attn_cuda_backward(
56
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
57
+ #else
58
+ AT_ERROR("Not compiled with GPU support");
59
+ #endif
60
+ }
61
+ AT_ERROR("Not implemented on the CPU");
62
+ }
63
+
64
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.cpp ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #include <vector>
12
+
13
+ #include <ATen/ATen.h>
14
+ #include <ATen/cuda/CUDAContext.h>
15
+
16
+ namespace groundingdino {
17
+
18
+ at::Tensor
19
+ ms_deform_attn_cpu_forward(
20
+ const at::Tensor &value,
21
+ const at::Tensor &spatial_shapes,
22
+ const at::Tensor &level_start_index,
23
+ const at::Tensor &sampling_loc,
24
+ const at::Tensor &attn_weight,
25
+ const int im2col_step)
26
+ {
27
+ AT_ERROR("Not implement on cpu");
28
+ }
29
+
30
+ std::vector<at::Tensor>
31
+ ms_deform_attn_cpu_backward(
32
+ const at::Tensor &value,
33
+ const at::Tensor &spatial_shapes,
34
+ const at::Tensor &level_start_index,
35
+ const at::Tensor &sampling_loc,
36
+ const at::Tensor &attn_weight,
37
+ const at::Tensor &grad_output,
38
+ const int im2col_step)
39
+ {
40
+ AT_ERROR("Not implement on cpu");
41
+ }
42
+
43
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cpu.h ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #pragma once
12
+ #include <torch/extension.h>
13
+
14
+ namespace groundingdino {
15
+
16
+ at::Tensor
17
+ ms_deform_attn_cpu_forward(
18
+ const at::Tensor &value,
19
+ const at::Tensor &spatial_shapes,
20
+ const at::Tensor &level_start_index,
21
+ const at::Tensor &sampling_loc,
22
+ const at::Tensor &attn_weight,
23
+ const int im2col_step);
24
+
25
+ std::vector<at::Tensor>
26
+ ms_deform_attn_cpu_backward(
27
+ const at::Tensor &value,
28
+ const at::Tensor &spatial_shapes,
29
+ const at::Tensor &level_start_index,
30
+ const at::Tensor &sampling_loc,
31
+ const at::Tensor &attn_weight,
32
+ const at::Tensor &grad_output,
33
+ const int im2col_step);
34
+
35
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.cu ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #include <vector>
12
+ #include "ms_deform_im2col_cuda.cuh"
13
+
14
+ #include <ATen/ATen.h>
15
+ #include <ATen/cuda/CUDAContext.h>
16
+ #include <cuda.h>
17
+ #include <cuda_runtime.h>
18
+
19
+ namespace groundingdino {
20
+
21
+ at::Tensor ms_deform_attn_cuda_forward(
22
+ const at::Tensor &value,
23
+ const at::Tensor &spatial_shapes,
24
+ const at::Tensor &level_start_index,
25
+ const at::Tensor &sampling_loc,
26
+ const at::Tensor &attn_weight,
27
+ const int im2col_step)
28
+ {
29
+ AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
30
+ AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
31
+ AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
32
+ AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
33
+ AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
34
+
35
+ AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
36
+ AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
37
+ AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
38
+ AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
39
+ AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
40
+
41
+ const int batch = value.size(0);
42
+ const int spatial_size = value.size(1);
43
+ const int num_heads = value.size(2);
44
+ const int channels = value.size(3);
45
+
46
+ const int num_levels = spatial_shapes.size(0);
47
+
48
+ const int num_query = sampling_loc.size(1);
49
+ const int num_point = sampling_loc.size(4);
50
+
51
+ const int im2col_step_ = std::min(batch, im2col_step);
52
+
53
+ AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
54
+
55
+ auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
56
+
57
+ const int batch_n = im2col_step_;
58
+ auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
59
+ auto per_value_size = spatial_size * num_heads * channels;
60
+ auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
61
+ auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
62
+ for (int n = 0; n < batch/im2col_step_; ++n)
63
+ {
64
+ auto columns = output_n.select(0, n);
65
+ AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
66
+ ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
67
+ value.data<scalar_t>() + n * im2col_step_ * per_value_size,
68
+ spatial_shapes.data<int64_t>(),
69
+ level_start_index.data<int64_t>(),
70
+ sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
71
+ attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
72
+ batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
73
+ columns.data<scalar_t>());
74
+
75
+ }));
76
+ }
77
+
78
+ output = output.view({batch, num_query, num_heads*channels});
79
+
80
+ return output;
81
+ }
82
+
83
+
84
+ std::vector<at::Tensor> ms_deform_attn_cuda_backward(
85
+ const at::Tensor &value,
86
+ const at::Tensor &spatial_shapes,
87
+ const at::Tensor &level_start_index,
88
+ const at::Tensor &sampling_loc,
89
+ const at::Tensor &attn_weight,
90
+ const at::Tensor &grad_output,
91
+ const int im2col_step)
92
+ {
93
+
94
+ AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
95
+ AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
96
+ AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
97
+ AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
98
+ AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
99
+ AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
100
+
101
+ AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
102
+ AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
103
+ AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
104
+ AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
105
+ AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
106
+ AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
107
+
108
+ const int batch = value.size(0);
109
+ const int spatial_size = value.size(1);
110
+ const int num_heads = value.size(2);
111
+ const int channels = value.size(3);
112
+
113
+ const int num_levels = spatial_shapes.size(0);
114
+
115
+ const int num_query = sampling_loc.size(1);
116
+ const int num_point = sampling_loc.size(4);
117
+
118
+ const int im2col_step_ = std::min(batch, im2col_step);
119
+
120
+ AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
121
+
122
+ auto grad_value = at::zeros_like(value);
123
+ auto grad_sampling_loc = at::zeros_like(sampling_loc);
124
+ auto grad_attn_weight = at::zeros_like(attn_weight);
125
+
126
+ const int batch_n = im2col_step_;
127
+ auto per_value_size = spatial_size * num_heads * channels;
128
+ auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
129
+ auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
130
+ auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
131
+
132
+ for (int n = 0; n < batch/im2col_step_; ++n)
133
+ {
134
+ auto grad_output_g = grad_output_n.select(0, n);
135
+ AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
136
+ ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
137
+ grad_output_g.data<scalar_t>(),
138
+ value.data<scalar_t>() + n * im2col_step_ * per_value_size,
139
+ spatial_shapes.data<int64_t>(),
140
+ level_start_index.data<int64_t>(),
141
+ sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
142
+ attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size,
143
+ batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
144
+ grad_value.data<scalar_t>() + n * im2col_step_ * per_value_size,
145
+ grad_sampling_loc.data<scalar_t>() + n * im2col_step_ * per_sample_loc_size,
146
+ grad_attn_weight.data<scalar_t>() + n * im2col_step_ * per_attn_weight_size);
147
+
148
+ }));
149
+ }
150
+
151
+ return {
152
+ grad_value, grad_sampling_loc, grad_attn_weight
153
+ };
154
+ }
155
+
156
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_attn_cuda.h ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************************************
7
+ * Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
8
+ **************************************************************************************************
9
+ */
10
+
11
+ #pragma once
12
+ #include <torch/extension.h>
13
+
14
+ namespace groundingdino {
15
+
16
+ at::Tensor ms_deform_attn_cuda_forward(
17
+ const at::Tensor &value,
18
+ const at::Tensor &spatial_shapes,
19
+ const at::Tensor &level_start_index,
20
+ const at::Tensor &sampling_loc,
21
+ const at::Tensor &attn_weight,
22
+ const int im2col_step);
23
+
24
+ std::vector<at::Tensor> ms_deform_attn_cuda_backward(
25
+ const at::Tensor &value,
26
+ const at::Tensor &spatial_shapes,
27
+ const at::Tensor &level_start_index,
28
+ const at::Tensor &sampling_loc,
29
+ const at::Tensor &attn_weight,
30
+ const at::Tensor &grad_output,
31
+ const int im2col_step);
32
+
33
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/MsDeformAttn/ms_deform_im2col_cuda.cuh ADDED
@@ -0,0 +1,1327 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /*!
2
+ **************************************************************************
3
+ * Deformable DETR
4
+ * Copyright (c) 2020 SenseTime. All Rights Reserved.
5
+ * Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ **************************************************************************
7
+ * Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
8
+ * Copyright (c) 2018 Microsoft
9
+ **************************************************************************
10
+ */
11
+
12
+ #include <cstdio>
13
+ #include <algorithm>
14
+ #include <cstring>
15
+
16
+ #include <ATen/ATen.h>
17
+ #include <ATen/cuda/CUDAContext.h>
18
+
19
+ #include <THC/THCAtomics.cuh>
20
+
21
+ #define CUDA_KERNEL_LOOP(i, n) \
22
+ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
23
+ i < (n); \
24
+ i += blockDim.x * gridDim.x)
25
+
26
+ const int CUDA_NUM_THREADS = 1024;
27
+ inline int GET_BLOCKS(const int N, const int num_threads)
28
+ {
29
+ return (N + num_threads - 1) / num_threads;
30
+ }
31
+
32
+
33
+ template <typename scalar_t>
34
+ __device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
35
+ const int &height, const int &width, const int &nheads, const int &channels,
36
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c)
37
+ {
38
+ const int h_low = floor(h);
39
+ const int w_low = floor(w);
40
+ const int h_high = h_low + 1;
41
+ const int w_high = w_low + 1;
42
+
43
+ const scalar_t lh = h - h_low;
44
+ const scalar_t lw = w - w_low;
45
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
46
+
47
+ const int w_stride = nheads * channels;
48
+ const int h_stride = width * w_stride;
49
+ const int h_low_ptr_offset = h_low * h_stride;
50
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
51
+ const int w_low_ptr_offset = w_low * w_stride;
52
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
53
+ const int base_ptr = m * channels + c;
54
+
55
+ scalar_t v1 = 0;
56
+ if (h_low >= 0 && w_low >= 0)
57
+ {
58
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
59
+ v1 = bottom_data[ptr1];
60
+ }
61
+ scalar_t v2 = 0;
62
+ if (h_low >= 0 && w_high <= width - 1)
63
+ {
64
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
65
+ v2 = bottom_data[ptr2];
66
+ }
67
+ scalar_t v3 = 0;
68
+ if (h_high <= height - 1 && w_low >= 0)
69
+ {
70
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
71
+ v3 = bottom_data[ptr3];
72
+ }
73
+ scalar_t v4 = 0;
74
+ if (h_high <= height - 1 && w_high <= width - 1)
75
+ {
76
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
77
+ v4 = bottom_data[ptr4];
78
+ }
79
+
80
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
81
+
82
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
83
+ return val;
84
+ }
85
+
86
+
87
+ template <typename scalar_t>
88
+ __device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
89
+ const int &height, const int &width, const int &nheads, const int &channels,
90
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c,
91
+ const scalar_t &top_grad,
92
+ const scalar_t &attn_weight,
93
+ scalar_t* &grad_value,
94
+ scalar_t* grad_sampling_loc,
95
+ scalar_t* grad_attn_weight)
96
+ {
97
+ const int h_low = floor(h);
98
+ const int w_low = floor(w);
99
+ const int h_high = h_low + 1;
100
+ const int w_high = w_low + 1;
101
+
102
+ const scalar_t lh = h - h_low;
103
+ const scalar_t lw = w - w_low;
104
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
105
+
106
+ const int w_stride = nheads * channels;
107
+ const int h_stride = width * w_stride;
108
+ const int h_low_ptr_offset = h_low * h_stride;
109
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
110
+ const int w_low_ptr_offset = w_low * w_stride;
111
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
112
+ const int base_ptr = m * channels + c;
113
+
114
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
115
+ const scalar_t top_grad_value = top_grad * attn_weight;
116
+ scalar_t grad_h_weight = 0, grad_w_weight = 0;
117
+
118
+ scalar_t v1 = 0;
119
+ if (h_low >= 0 && w_low >= 0)
120
+ {
121
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
122
+ v1 = bottom_data[ptr1];
123
+ grad_h_weight -= hw * v1;
124
+ grad_w_weight -= hh * v1;
125
+ atomicAdd(grad_value+ptr1, w1*top_grad_value);
126
+ }
127
+ scalar_t v2 = 0;
128
+ if (h_low >= 0 && w_high <= width - 1)
129
+ {
130
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
131
+ v2 = bottom_data[ptr2];
132
+ grad_h_weight -= lw * v2;
133
+ grad_w_weight += hh * v2;
134
+ atomicAdd(grad_value+ptr2, w2*top_grad_value);
135
+ }
136
+ scalar_t v3 = 0;
137
+ if (h_high <= height - 1 && w_low >= 0)
138
+ {
139
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
140
+ v3 = bottom_data[ptr3];
141
+ grad_h_weight += hw * v3;
142
+ grad_w_weight -= lh * v3;
143
+ atomicAdd(grad_value+ptr3, w3*top_grad_value);
144
+ }
145
+ scalar_t v4 = 0;
146
+ if (h_high <= height - 1 && w_high <= width - 1)
147
+ {
148
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
149
+ v4 = bottom_data[ptr4];
150
+ grad_h_weight += lw * v4;
151
+ grad_w_weight += lh * v4;
152
+ atomicAdd(grad_value+ptr4, w4*top_grad_value);
153
+ }
154
+
155
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
156
+ *grad_attn_weight = top_grad * val;
157
+ *grad_sampling_loc = width * grad_w_weight * top_grad_value;
158
+ *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
159
+ }
160
+
161
+
162
+ template <typename scalar_t>
163
+ __device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
164
+ const int &height, const int &width, const int &nheads, const int &channels,
165
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c,
166
+ const scalar_t &top_grad,
167
+ const scalar_t &attn_weight,
168
+ scalar_t* &grad_value,
169
+ scalar_t* grad_sampling_loc,
170
+ scalar_t* grad_attn_weight)
171
+ {
172
+ const int h_low = floor(h);
173
+ const int w_low = floor(w);
174
+ const int h_high = h_low + 1;
175
+ const int w_high = w_low + 1;
176
+
177
+ const scalar_t lh = h - h_low;
178
+ const scalar_t lw = w - w_low;
179
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
180
+
181
+ const int w_stride = nheads * channels;
182
+ const int h_stride = width * w_stride;
183
+ const int h_low_ptr_offset = h_low * h_stride;
184
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
185
+ const int w_low_ptr_offset = w_low * w_stride;
186
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
187
+ const int base_ptr = m * channels + c;
188
+
189
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
190
+ const scalar_t top_grad_value = top_grad * attn_weight;
191
+ scalar_t grad_h_weight = 0, grad_w_weight = 0;
192
+
193
+ scalar_t v1 = 0;
194
+ if (h_low >= 0 && w_low >= 0)
195
+ {
196
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
197
+ v1 = bottom_data[ptr1];
198
+ grad_h_weight -= hw * v1;
199
+ grad_w_weight -= hh * v1;
200
+ atomicAdd(grad_value+ptr1, w1*top_grad_value);
201
+ }
202
+ scalar_t v2 = 0;
203
+ if (h_low >= 0 && w_high <= width - 1)
204
+ {
205
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
206
+ v2 = bottom_data[ptr2];
207
+ grad_h_weight -= lw * v2;
208
+ grad_w_weight += hh * v2;
209
+ atomicAdd(grad_value+ptr2, w2*top_grad_value);
210
+ }
211
+ scalar_t v3 = 0;
212
+ if (h_high <= height - 1 && w_low >= 0)
213
+ {
214
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
215
+ v3 = bottom_data[ptr3];
216
+ grad_h_weight += hw * v3;
217
+ grad_w_weight -= lh * v3;
218
+ atomicAdd(grad_value+ptr3, w3*top_grad_value);
219
+ }
220
+ scalar_t v4 = 0;
221
+ if (h_high <= height - 1 && w_high <= width - 1)
222
+ {
223
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
224
+ v4 = bottom_data[ptr4];
225
+ grad_h_weight += lw * v4;
226
+ grad_w_weight += lh * v4;
227
+ atomicAdd(grad_value+ptr4, w4*top_grad_value);
228
+ }
229
+
230
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
231
+ atomicAdd(grad_attn_weight, top_grad * val);
232
+ atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
233
+ atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
234
+ }
235
+
236
+
237
+ template <typename scalar_t>
238
+ __global__ void ms_deformable_im2col_gpu_kernel(const int n,
239
+ const scalar_t *data_value,
240
+ const int64_t *data_spatial_shapes,
241
+ const int64_t *data_level_start_index,
242
+ const scalar_t *data_sampling_loc,
243
+ const scalar_t *data_attn_weight,
244
+ const int batch_size,
245
+ const int spatial_size,
246
+ const int num_heads,
247
+ const int channels,
248
+ const int num_levels,
249
+ const int num_query,
250
+ const int num_point,
251
+ scalar_t *data_col)
252
+ {
253
+ CUDA_KERNEL_LOOP(index, n)
254
+ {
255
+ int _temp = index;
256
+ const int c_col = _temp % channels;
257
+ _temp /= channels;
258
+ const int sampling_index = _temp;
259
+ const int m_col = _temp % num_heads;
260
+ _temp /= num_heads;
261
+ const int q_col = _temp % num_query;
262
+ _temp /= num_query;
263
+ const int b_col = _temp;
264
+
265
+ scalar_t *data_col_ptr = data_col + index;
266
+ int data_weight_ptr = sampling_index * num_levels * num_point;
267
+ int data_loc_w_ptr = data_weight_ptr << 1;
268
+ const int qid_stride = num_heads * channels;
269
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
270
+ scalar_t col = 0;
271
+
272
+ for (int l_col=0; l_col < num_levels; ++l_col)
273
+ {
274
+ const int level_start_id = data_level_start_index[l_col];
275
+ const int spatial_h_ptr = l_col << 1;
276
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
277
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
278
+ const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
279
+ for (int p_col=0; p_col < num_point; ++p_col)
280
+ {
281
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
282
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
283
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
284
+
285
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
286
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
287
+
288
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
289
+ {
290
+ col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
291
+ }
292
+
293
+ data_weight_ptr += 1;
294
+ data_loc_w_ptr += 2;
295
+ }
296
+ }
297
+ *data_col_ptr = col;
298
+ }
299
+ }
300
+
301
+ template <typename scalar_t, unsigned int blockSize>
302
+ __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
303
+ const scalar_t *grad_col,
304
+ const scalar_t *data_value,
305
+ const int64_t *data_spatial_shapes,
306
+ const int64_t *data_level_start_index,
307
+ const scalar_t *data_sampling_loc,
308
+ const scalar_t *data_attn_weight,
309
+ const int batch_size,
310
+ const int spatial_size,
311
+ const int num_heads,
312
+ const int channels,
313
+ const int num_levels,
314
+ const int num_query,
315
+ const int num_point,
316
+ scalar_t *grad_value,
317
+ scalar_t *grad_sampling_loc,
318
+ scalar_t *grad_attn_weight)
319
+ {
320
+ CUDA_KERNEL_LOOP(index, n)
321
+ {
322
+ __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
323
+ __shared__ scalar_t cache_grad_attn_weight[blockSize];
324
+ unsigned int tid = threadIdx.x;
325
+ int _temp = index;
326
+ const int c_col = _temp % channels;
327
+ _temp /= channels;
328
+ const int sampling_index = _temp;
329
+ const int m_col = _temp % num_heads;
330
+ _temp /= num_heads;
331
+ const int q_col = _temp % num_query;
332
+ _temp /= num_query;
333
+ const int b_col = _temp;
334
+
335
+ const scalar_t top_grad = grad_col[index];
336
+
337
+ int data_weight_ptr = sampling_index * num_levels * num_point;
338
+ int data_loc_w_ptr = data_weight_ptr << 1;
339
+ const int grad_sampling_ptr = data_weight_ptr;
340
+ grad_sampling_loc += grad_sampling_ptr << 1;
341
+ grad_attn_weight += grad_sampling_ptr;
342
+ const int grad_weight_stride = 1;
343
+ const int grad_loc_stride = 2;
344
+ const int qid_stride = num_heads * channels;
345
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
346
+
347
+ for (int l_col=0; l_col < num_levels; ++l_col)
348
+ {
349
+ const int level_start_id = data_level_start_index[l_col];
350
+ const int spatial_h_ptr = l_col << 1;
351
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
352
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
353
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
354
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
355
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
356
+
357
+ for (int p_col=0; p_col < num_point; ++p_col)
358
+ {
359
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
360
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
361
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
362
+
363
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
364
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
365
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
366
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
367
+ *(cache_grad_attn_weight+threadIdx.x)=0;
368
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
369
+ {
370
+ ms_deform_attn_col2im_bilinear(
371
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
372
+ top_grad, weight, grad_value_ptr,
373
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
374
+ }
375
+
376
+ __syncthreads();
377
+ if (tid == 0)
378
+ {
379
+ scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
380
+ int sid=2;
381
+ for (unsigned int tid = 1; tid < blockSize; ++tid)
382
+ {
383
+ _grad_w += cache_grad_sampling_loc[sid];
384
+ _grad_h += cache_grad_sampling_loc[sid + 1];
385
+ _grad_a += cache_grad_attn_weight[tid];
386
+ sid += 2;
387
+ }
388
+
389
+
390
+ *grad_sampling_loc = _grad_w;
391
+ *(grad_sampling_loc + 1) = _grad_h;
392
+ *grad_attn_weight = _grad_a;
393
+ }
394
+ __syncthreads();
395
+
396
+ data_weight_ptr += 1;
397
+ data_loc_w_ptr += 2;
398
+ grad_attn_weight += grad_weight_stride;
399
+ grad_sampling_loc += grad_loc_stride;
400
+ }
401
+ }
402
+ }
403
+ }
404
+
405
+
406
+ template <typename scalar_t, unsigned int blockSize>
407
+ __global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
408
+ const scalar_t *grad_col,
409
+ const scalar_t *data_value,
410
+ const int64_t *data_spatial_shapes,
411
+ const int64_t *data_level_start_index,
412
+ const scalar_t *data_sampling_loc,
413
+ const scalar_t *data_attn_weight,
414
+ const int batch_size,
415
+ const int spatial_size,
416
+ const int num_heads,
417
+ const int channels,
418
+ const int num_levels,
419
+ const int num_query,
420
+ const int num_point,
421
+ scalar_t *grad_value,
422
+ scalar_t *grad_sampling_loc,
423
+ scalar_t *grad_attn_weight)
424
+ {
425
+ CUDA_KERNEL_LOOP(index, n)
426
+ {
427
+ __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
428
+ __shared__ scalar_t cache_grad_attn_weight[blockSize];
429
+ unsigned int tid = threadIdx.x;
430
+ int _temp = index;
431
+ const int c_col = _temp % channels;
432
+ _temp /= channels;
433
+ const int sampling_index = _temp;
434
+ const int m_col = _temp % num_heads;
435
+ _temp /= num_heads;
436
+ const int q_col = _temp % num_query;
437
+ _temp /= num_query;
438
+ const int b_col = _temp;
439
+
440
+ const scalar_t top_grad = grad_col[index];
441
+
442
+ int data_weight_ptr = sampling_index * num_levels * num_point;
443
+ int data_loc_w_ptr = data_weight_ptr << 1;
444
+ const int grad_sampling_ptr = data_weight_ptr;
445
+ grad_sampling_loc += grad_sampling_ptr << 1;
446
+ grad_attn_weight += grad_sampling_ptr;
447
+ const int grad_weight_stride = 1;
448
+ const int grad_loc_stride = 2;
449
+ const int qid_stride = num_heads * channels;
450
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
451
+
452
+ for (int l_col=0; l_col < num_levels; ++l_col)
453
+ {
454
+ const int level_start_id = data_level_start_index[l_col];
455
+ const int spatial_h_ptr = l_col << 1;
456
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
457
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
458
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
459
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
460
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
461
+
462
+ for (int p_col=0; p_col < num_point; ++p_col)
463
+ {
464
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
465
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
466
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
467
+
468
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
469
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
470
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
471
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
472
+ *(cache_grad_attn_weight+threadIdx.x)=0;
473
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
474
+ {
475
+ ms_deform_attn_col2im_bilinear(
476
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
477
+ top_grad, weight, grad_value_ptr,
478
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
479
+ }
480
+
481
+ __syncthreads();
482
+
483
+ for (unsigned int s=blockSize/2; s>0; s>>=1)
484
+ {
485
+ if (tid < s) {
486
+ const unsigned int xid1 = tid << 1;
487
+ const unsigned int xid2 = (tid + s) << 1;
488
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
489
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
490
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
491
+ }
492
+ __syncthreads();
493
+ }
494
+
495
+ if (tid == 0)
496
+ {
497
+ *grad_sampling_loc = cache_grad_sampling_loc[0];
498
+ *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
499
+ *grad_attn_weight = cache_grad_attn_weight[0];
500
+ }
501
+ __syncthreads();
502
+
503
+ data_weight_ptr += 1;
504
+ data_loc_w_ptr += 2;
505
+ grad_attn_weight += grad_weight_stride;
506
+ grad_sampling_loc += grad_loc_stride;
507
+ }
508
+ }
509
+ }
510
+ }
511
+
512
+
513
+ template <typename scalar_t>
514
+ __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
515
+ const scalar_t *grad_col,
516
+ const scalar_t *data_value,
517
+ const int64_t *data_spatial_shapes,
518
+ const int64_t *data_level_start_index,
519
+ const scalar_t *data_sampling_loc,
520
+ const scalar_t *data_attn_weight,
521
+ const int batch_size,
522
+ const int spatial_size,
523
+ const int num_heads,
524
+ const int channels,
525
+ const int num_levels,
526
+ const int num_query,
527
+ const int num_point,
528
+ scalar_t *grad_value,
529
+ scalar_t *grad_sampling_loc,
530
+ scalar_t *grad_attn_weight)
531
+ {
532
+ CUDA_KERNEL_LOOP(index, n)
533
+ {
534
+ extern __shared__ int _s[];
535
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
536
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
537
+ unsigned int tid = threadIdx.x;
538
+ int _temp = index;
539
+ const int c_col = _temp % channels;
540
+ _temp /= channels;
541
+ const int sampling_index = _temp;
542
+ const int m_col = _temp % num_heads;
543
+ _temp /= num_heads;
544
+ const int q_col = _temp % num_query;
545
+ _temp /= num_query;
546
+ const int b_col = _temp;
547
+
548
+ const scalar_t top_grad = grad_col[index];
549
+
550
+ int data_weight_ptr = sampling_index * num_levels * num_point;
551
+ int data_loc_w_ptr = data_weight_ptr << 1;
552
+ const int grad_sampling_ptr = data_weight_ptr;
553
+ grad_sampling_loc += grad_sampling_ptr << 1;
554
+ grad_attn_weight += grad_sampling_ptr;
555
+ const int grad_weight_stride = 1;
556
+ const int grad_loc_stride = 2;
557
+ const int qid_stride = num_heads * channels;
558
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
559
+
560
+ for (int l_col=0; l_col < num_levels; ++l_col)
561
+ {
562
+ const int level_start_id = data_level_start_index[l_col];
563
+ const int spatial_h_ptr = l_col << 1;
564
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
565
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
566
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
567
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
568
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
569
+
570
+ for (int p_col=0; p_col < num_point; ++p_col)
571
+ {
572
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
573
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
574
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
575
+
576
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
577
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
578
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
579
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
580
+ *(cache_grad_attn_weight+threadIdx.x)=0;
581
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
582
+ {
583
+ ms_deform_attn_col2im_bilinear(
584
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
585
+ top_grad, weight, grad_value_ptr,
586
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
587
+ }
588
+
589
+ __syncthreads();
590
+ if (tid == 0)
591
+ {
592
+ scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
593
+ int sid=2;
594
+ for (unsigned int tid = 1; tid < blockDim.x; ++tid)
595
+ {
596
+ _grad_w += cache_grad_sampling_loc[sid];
597
+ _grad_h += cache_grad_sampling_loc[sid + 1];
598
+ _grad_a += cache_grad_attn_weight[tid];
599
+ sid += 2;
600
+ }
601
+
602
+
603
+ *grad_sampling_loc = _grad_w;
604
+ *(grad_sampling_loc + 1) = _grad_h;
605
+ *grad_attn_weight = _grad_a;
606
+ }
607
+ __syncthreads();
608
+
609
+ data_weight_ptr += 1;
610
+ data_loc_w_ptr += 2;
611
+ grad_attn_weight += grad_weight_stride;
612
+ grad_sampling_loc += grad_loc_stride;
613
+ }
614
+ }
615
+ }
616
+ }
617
+
618
+ template <typename scalar_t>
619
+ __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
620
+ const scalar_t *grad_col,
621
+ const scalar_t *data_value,
622
+ const int64_t *data_spatial_shapes,
623
+ const int64_t *data_level_start_index,
624
+ const scalar_t *data_sampling_loc,
625
+ const scalar_t *data_attn_weight,
626
+ const int batch_size,
627
+ const int spatial_size,
628
+ const int num_heads,
629
+ const int channels,
630
+ const int num_levels,
631
+ const int num_query,
632
+ const int num_point,
633
+ scalar_t *grad_value,
634
+ scalar_t *grad_sampling_loc,
635
+ scalar_t *grad_attn_weight)
636
+ {
637
+ CUDA_KERNEL_LOOP(index, n)
638
+ {
639
+ extern __shared__ int _s[];
640
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
641
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
642
+ unsigned int tid = threadIdx.x;
643
+ int _temp = index;
644
+ const int c_col = _temp % channels;
645
+ _temp /= channels;
646
+ const int sampling_index = _temp;
647
+ const int m_col = _temp % num_heads;
648
+ _temp /= num_heads;
649
+ const int q_col = _temp % num_query;
650
+ _temp /= num_query;
651
+ const int b_col = _temp;
652
+
653
+ const scalar_t top_grad = grad_col[index];
654
+
655
+ int data_weight_ptr = sampling_index * num_levels * num_point;
656
+ int data_loc_w_ptr = data_weight_ptr << 1;
657
+ const int grad_sampling_ptr = data_weight_ptr;
658
+ grad_sampling_loc += grad_sampling_ptr << 1;
659
+ grad_attn_weight += grad_sampling_ptr;
660
+ const int grad_weight_stride = 1;
661
+ const int grad_loc_stride = 2;
662
+ const int qid_stride = num_heads * channels;
663
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
664
+
665
+ for (int l_col=0; l_col < num_levels; ++l_col)
666
+ {
667
+ const int level_start_id = data_level_start_index[l_col];
668
+ const int spatial_h_ptr = l_col << 1;
669
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
670
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
671
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
672
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
673
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
674
+
675
+ for (int p_col=0; p_col < num_point; ++p_col)
676
+ {
677
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
678
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
679
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
680
+
681
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
682
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
683
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
684
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
685
+ *(cache_grad_attn_weight+threadIdx.x)=0;
686
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
687
+ {
688
+ ms_deform_attn_col2im_bilinear(
689
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
690
+ top_grad, weight, grad_value_ptr,
691
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
692
+ }
693
+
694
+ __syncthreads();
695
+
696
+ for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
697
+ {
698
+ if (tid < s) {
699
+ const unsigned int xid1 = tid << 1;
700
+ const unsigned int xid2 = (tid + s) << 1;
701
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
702
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
703
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
704
+ if (tid + (s << 1) < spre)
705
+ {
706
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
707
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
708
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
709
+ }
710
+ }
711
+ __syncthreads();
712
+ }
713
+
714
+ if (tid == 0)
715
+ {
716
+ *grad_sampling_loc = cache_grad_sampling_loc[0];
717
+ *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
718
+ *grad_attn_weight = cache_grad_attn_weight[0];
719
+ }
720
+ __syncthreads();
721
+
722
+ data_weight_ptr += 1;
723
+ data_loc_w_ptr += 2;
724
+ grad_attn_weight += grad_weight_stride;
725
+ grad_sampling_loc += grad_loc_stride;
726
+ }
727
+ }
728
+ }
729
+ }
730
+
731
+ template <typename scalar_t>
732
+ __global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
733
+ const scalar_t *grad_col,
734
+ const scalar_t *data_value,
735
+ const int64_t *data_spatial_shapes,
736
+ const int64_t *data_level_start_index,
737
+ const scalar_t *data_sampling_loc,
738
+ const scalar_t *data_attn_weight,
739
+ const int batch_size,
740
+ const int spatial_size,
741
+ const int num_heads,
742
+ const int channels,
743
+ const int num_levels,
744
+ const int num_query,
745
+ const int num_point,
746
+ scalar_t *grad_value,
747
+ scalar_t *grad_sampling_loc,
748
+ scalar_t *grad_attn_weight)
749
+ {
750
+ CUDA_KERNEL_LOOP(index, n)
751
+ {
752
+ extern __shared__ int _s[];
753
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
754
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
755
+ unsigned int tid = threadIdx.x;
756
+ int _temp = index;
757
+ const int c_col = _temp % channels;
758
+ _temp /= channels;
759
+ const int sampling_index = _temp;
760
+ const int m_col = _temp % num_heads;
761
+ _temp /= num_heads;
762
+ const int q_col = _temp % num_query;
763
+ _temp /= num_query;
764
+ const int b_col = _temp;
765
+
766
+ const scalar_t top_grad = grad_col[index];
767
+
768
+ int data_weight_ptr = sampling_index * num_levels * num_point;
769
+ int data_loc_w_ptr = data_weight_ptr << 1;
770
+ const int grad_sampling_ptr = data_weight_ptr;
771
+ grad_sampling_loc += grad_sampling_ptr << 1;
772
+ grad_attn_weight += grad_sampling_ptr;
773
+ const int grad_weight_stride = 1;
774
+ const int grad_loc_stride = 2;
775
+ const int qid_stride = num_heads * channels;
776
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
777
+
778
+ for (int l_col=0; l_col < num_levels; ++l_col)
779
+ {
780
+ const int level_start_id = data_level_start_index[l_col];
781
+ const int spatial_h_ptr = l_col << 1;
782
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
783
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
784
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
785
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
786
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
787
+
788
+ for (int p_col=0; p_col < num_point; ++p_col)
789
+ {
790
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
791
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
792
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
793
+
794
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
795
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
796
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
797
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
798
+ *(cache_grad_attn_weight+threadIdx.x)=0;
799
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
800
+ {
801
+ ms_deform_attn_col2im_bilinear(
802
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
803
+ top_grad, weight, grad_value_ptr,
804
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
805
+ }
806
+
807
+ __syncthreads();
808
+
809
+ for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
810
+ {
811
+ if (tid < s) {
812
+ const unsigned int xid1 = tid << 1;
813
+ const unsigned int xid2 = (tid + s) << 1;
814
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
815
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
816
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
817
+ if (tid + (s << 1) < spre)
818
+ {
819
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
820
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
821
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
822
+ }
823
+ }
824
+ __syncthreads();
825
+ }
826
+
827
+ if (tid == 0)
828
+ {
829
+ atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
830
+ atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
831
+ atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
832
+ }
833
+ __syncthreads();
834
+
835
+ data_weight_ptr += 1;
836
+ data_loc_w_ptr += 2;
837
+ grad_attn_weight += grad_weight_stride;
838
+ grad_sampling_loc += grad_loc_stride;
839
+ }
840
+ }
841
+ }
842
+ }
843
+
844
+
845
+ template <typename scalar_t>
846
+ __global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
847
+ const scalar_t *grad_col,
848
+ const scalar_t *data_value,
849
+ const int64_t *data_spatial_shapes,
850
+ const int64_t *data_level_start_index,
851
+ const scalar_t *data_sampling_loc,
852
+ const scalar_t *data_attn_weight,
853
+ const int batch_size,
854
+ const int spatial_size,
855
+ const int num_heads,
856
+ const int channels,
857
+ const int num_levels,
858
+ const int num_query,
859
+ const int num_point,
860
+ scalar_t *grad_value,
861
+ scalar_t *grad_sampling_loc,
862
+ scalar_t *grad_attn_weight)
863
+ {
864
+ CUDA_KERNEL_LOOP(index, n)
865
+ {
866
+ int _temp = index;
867
+ const int c_col = _temp % channels;
868
+ _temp /= channels;
869
+ const int sampling_index = _temp;
870
+ const int m_col = _temp % num_heads;
871
+ _temp /= num_heads;
872
+ const int q_col = _temp % num_query;
873
+ _temp /= num_query;
874
+ const int b_col = _temp;
875
+
876
+ const scalar_t top_grad = grad_col[index];
877
+
878
+ int data_weight_ptr = sampling_index * num_levels * num_point;
879
+ int data_loc_w_ptr = data_weight_ptr << 1;
880
+ const int grad_sampling_ptr = data_weight_ptr;
881
+ grad_sampling_loc += grad_sampling_ptr << 1;
882
+ grad_attn_weight += grad_sampling_ptr;
883
+ const int grad_weight_stride = 1;
884
+ const int grad_loc_stride = 2;
885
+ const int qid_stride = num_heads * channels;
886
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
887
+
888
+ for (int l_col=0; l_col < num_levels; ++l_col)
889
+ {
890
+ const int level_start_id = data_level_start_index[l_col];
891
+ const int spatial_h_ptr = l_col << 1;
892
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
893
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
894
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
895
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
896
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
897
+
898
+ for (int p_col=0; p_col < num_point; ++p_col)
899
+ {
900
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
901
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
902
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
903
+
904
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
905
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
906
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
907
+ {
908
+ ms_deform_attn_col2im_bilinear_gm(
909
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
910
+ top_grad, weight, grad_value_ptr,
911
+ grad_sampling_loc, grad_attn_weight);
912
+ }
913
+ data_weight_ptr += 1;
914
+ data_loc_w_ptr += 2;
915
+ grad_attn_weight += grad_weight_stride;
916
+ grad_sampling_loc += grad_loc_stride;
917
+ }
918
+ }
919
+ }
920
+ }
921
+
922
+
923
+ template <typename scalar_t>
924
+ void ms_deformable_im2col_cuda(cudaStream_t stream,
925
+ const scalar_t* data_value,
926
+ const int64_t* data_spatial_shapes,
927
+ const int64_t* data_level_start_index,
928
+ const scalar_t* data_sampling_loc,
929
+ const scalar_t* data_attn_weight,
930
+ const int batch_size,
931
+ const int spatial_size,
932
+ const int num_heads,
933
+ const int channels,
934
+ const int num_levels,
935
+ const int num_query,
936
+ const int num_point,
937
+ scalar_t* data_col)
938
+ {
939
+ const int num_kernels = batch_size * num_query * num_heads * channels;
940
+ const int num_actual_kernels = batch_size * num_query * num_heads * channels;
941
+ const int num_threads = CUDA_NUM_THREADS;
942
+ ms_deformable_im2col_gpu_kernel<scalar_t>
943
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
944
+ 0, stream>>>(
945
+ num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
946
+ batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
947
+
948
+ cudaError_t err = cudaGetLastError();
949
+ if (err != cudaSuccess)
950
+ {
951
+ printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
952
+ }
953
+
954
+ }
955
+
956
+ template <typename scalar_t>
957
+ void ms_deformable_col2im_cuda(cudaStream_t stream,
958
+ const scalar_t* grad_col,
959
+ const scalar_t* data_value,
960
+ const int64_t * data_spatial_shapes,
961
+ const int64_t * data_level_start_index,
962
+ const scalar_t * data_sampling_loc,
963
+ const scalar_t * data_attn_weight,
964
+ const int batch_size,
965
+ const int spatial_size,
966
+ const int num_heads,
967
+ const int channels,
968
+ const int num_levels,
969
+ const int num_query,
970
+ const int num_point,
971
+ scalar_t* grad_value,
972
+ scalar_t* grad_sampling_loc,
973
+ scalar_t* grad_attn_weight)
974
+ {
975
+ const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
976
+ const int num_kernels = batch_size * num_query * num_heads * channels;
977
+ const int num_actual_kernels = batch_size * num_query * num_heads * channels;
978
+ if (channels > 1024)
979
+ {
980
+ if ((channels & 1023) == 0)
981
+ {
982
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks<scalar_t>
983
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
984
+ num_threads*3*sizeof(scalar_t), stream>>>(
985
+ num_kernels,
986
+ grad_col,
987
+ data_value,
988
+ data_spatial_shapes,
989
+ data_level_start_index,
990
+ data_sampling_loc,
991
+ data_attn_weight,
992
+ batch_size,
993
+ spatial_size,
994
+ num_heads,
995
+ channels,
996
+ num_levels,
997
+ num_query,
998
+ num_point,
999
+ grad_value,
1000
+ grad_sampling_loc,
1001
+ grad_attn_weight);
1002
+ }
1003
+ else
1004
+ {
1005
+ ms_deformable_col2im_gpu_kernel_gm<scalar_t>
1006
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1007
+ 0, stream>>>(
1008
+ num_kernels,
1009
+ grad_col,
1010
+ data_value,
1011
+ data_spatial_shapes,
1012
+ data_level_start_index,
1013
+ data_sampling_loc,
1014
+ data_attn_weight,
1015
+ batch_size,
1016
+ spatial_size,
1017
+ num_heads,
1018
+ channels,
1019
+ num_levels,
1020
+ num_query,
1021
+ num_point,
1022
+ grad_value,
1023
+ grad_sampling_loc,
1024
+ grad_attn_weight);
1025
+ }
1026
+ }
1027
+ else{
1028
+ switch(channels)
1029
+ {
1030
+ case 1:
1031
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 1>
1032
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1033
+ 0, stream>>>(
1034
+ num_kernels,
1035
+ grad_col,
1036
+ data_value,
1037
+ data_spatial_shapes,
1038
+ data_level_start_index,
1039
+ data_sampling_loc,
1040
+ data_attn_weight,
1041
+ batch_size,
1042
+ spatial_size,
1043
+ num_heads,
1044
+ channels,
1045
+ num_levels,
1046
+ num_query,
1047
+ num_point,
1048
+ grad_value,
1049
+ grad_sampling_loc,
1050
+ grad_attn_weight);
1051
+ break;
1052
+ case 2:
1053
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 2>
1054
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1055
+ 0, stream>>>(
1056
+ num_kernels,
1057
+ grad_col,
1058
+ data_value,
1059
+ data_spatial_shapes,
1060
+ data_level_start_index,
1061
+ data_sampling_loc,
1062
+ data_attn_weight,
1063
+ batch_size,
1064
+ spatial_size,
1065
+ num_heads,
1066
+ channels,
1067
+ num_levels,
1068
+ num_query,
1069
+ num_point,
1070
+ grad_value,
1071
+ grad_sampling_loc,
1072
+ grad_attn_weight);
1073
+ break;
1074
+ case 4:
1075
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 4>
1076
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1077
+ 0, stream>>>(
1078
+ num_kernels,
1079
+ grad_col,
1080
+ data_value,
1081
+ data_spatial_shapes,
1082
+ data_level_start_index,
1083
+ data_sampling_loc,
1084
+ data_attn_weight,
1085
+ batch_size,
1086
+ spatial_size,
1087
+ num_heads,
1088
+ channels,
1089
+ num_levels,
1090
+ num_query,
1091
+ num_point,
1092
+ grad_value,
1093
+ grad_sampling_loc,
1094
+ grad_attn_weight);
1095
+ break;
1096
+ case 8:
1097
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 8>
1098
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1099
+ 0, stream>>>(
1100
+ num_kernels,
1101
+ grad_col,
1102
+ data_value,
1103
+ data_spatial_shapes,
1104
+ data_level_start_index,
1105
+ data_sampling_loc,
1106
+ data_attn_weight,
1107
+ batch_size,
1108
+ spatial_size,
1109
+ num_heads,
1110
+ channels,
1111
+ num_levels,
1112
+ num_query,
1113
+ num_point,
1114
+ grad_value,
1115
+ grad_sampling_loc,
1116
+ grad_attn_weight);
1117
+ break;
1118
+ case 16:
1119
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 16>
1120
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1121
+ 0, stream>>>(
1122
+ num_kernels,
1123
+ grad_col,
1124
+ data_value,
1125
+ data_spatial_shapes,
1126
+ data_level_start_index,
1127
+ data_sampling_loc,
1128
+ data_attn_weight,
1129
+ batch_size,
1130
+ spatial_size,
1131
+ num_heads,
1132
+ channels,
1133
+ num_levels,
1134
+ num_query,
1135
+ num_point,
1136
+ grad_value,
1137
+ grad_sampling_loc,
1138
+ grad_attn_weight);
1139
+ break;
1140
+ case 32:
1141
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1<scalar_t, 32>
1142
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1143
+ 0, stream>>>(
1144
+ num_kernels,
1145
+ grad_col,
1146
+ data_value,
1147
+ data_spatial_shapes,
1148
+ data_level_start_index,
1149
+ data_sampling_loc,
1150
+ data_attn_weight,
1151
+ batch_size,
1152
+ spatial_size,
1153
+ num_heads,
1154
+ channels,
1155
+ num_levels,
1156
+ num_query,
1157
+ num_point,
1158
+ grad_value,
1159
+ grad_sampling_loc,
1160
+ grad_attn_weight);
1161
+ break;
1162
+ case 64:
1163
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 64>
1164
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1165
+ 0, stream>>>(
1166
+ num_kernels,
1167
+ grad_col,
1168
+ data_value,
1169
+ data_spatial_shapes,
1170
+ data_level_start_index,
1171
+ data_sampling_loc,
1172
+ data_attn_weight,
1173
+ batch_size,
1174
+ spatial_size,
1175
+ num_heads,
1176
+ channels,
1177
+ num_levels,
1178
+ num_query,
1179
+ num_point,
1180
+ grad_value,
1181
+ grad_sampling_loc,
1182
+ grad_attn_weight);
1183
+ break;
1184
+ case 128:
1185
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 128>
1186
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1187
+ 0, stream>>>(
1188
+ num_kernels,
1189
+ grad_col,
1190
+ data_value,
1191
+ data_spatial_shapes,
1192
+ data_level_start_index,
1193
+ data_sampling_loc,
1194
+ data_attn_weight,
1195
+ batch_size,
1196
+ spatial_size,
1197
+ num_heads,
1198
+ channels,
1199
+ num_levels,
1200
+ num_query,
1201
+ num_point,
1202
+ grad_value,
1203
+ grad_sampling_loc,
1204
+ grad_attn_weight);
1205
+ break;
1206
+ case 256:
1207
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 256>
1208
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1209
+ 0, stream>>>(
1210
+ num_kernels,
1211
+ grad_col,
1212
+ data_value,
1213
+ data_spatial_shapes,
1214
+ data_level_start_index,
1215
+ data_sampling_loc,
1216
+ data_attn_weight,
1217
+ batch_size,
1218
+ spatial_size,
1219
+ num_heads,
1220
+ channels,
1221
+ num_levels,
1222
+ num_query,
1223
+ num_point,
1224
+ grad_value,
1225
+ grad_sampling_loc,
1226
+ grad_attn_weight);
1227
+ break;
1228
+ case 512:
1229
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 512>
1230
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1231
+ 0, stream>>>(
1232
+ num_kernels,
1233
+ grad_col,
1234
+ data_value,
1235
+ data_spatial_shapes,
1236
+ data_level_start_index,
1237
+ data_sampling_loc,
1238
+ data_attn_weight,
1239
+ batch_size,
1240
+ spatial_size,
1241
+ num_heads,
1242
+ channels,
1243
+ num_levels,
1244
+ num_query,
1245
+ num_point,
1246
+ grad_value,
1247
+ grad_sampling_loc,
1248
+ grad_attn_weight);
1249
+ break;
1250
+ case 1024:
1251
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2<scalar_t, 1024>
1252
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1253
+ 0, stream>>>(
1254
+ num_kernels,
1255
+ grad_col,
1256
+ data_value,
1257
+ data_spatial_shapes,
1258
+ data_level_start_index,
1259
+ data_sampling_loc,
1260
+ data_attn_weight,
1261
+ batch_size,
1262
+ spatial_size,
1263
+ num_heads,
1264
+ channels,
1265
+ num_levels,
1266
+ num_query,
1267
+ num_point,
1268
+ grad_value,
1269
+ grad_sampling_loc,
1270
+ grad_attn_weight);
1271
+ break;
1272
+ default:
1273
+ if (channels < 64)
1274
+ {
1275
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v1<scalar_t>
1276
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1277
+ num_threads*3*sizeof(scalar_t), stream>>>(
1278
+ num_kernels,
1279
+ grad_col,
1280
+ data_value,
1281
+ data_spatial_shapes,
1282
+ data_level_start_index,
1283
+ data_sampling_loc,
1284
+ data_attn_weight,
1285
+ batch_size,
1286
+ spatial_size,
1287
+ num_heads,
1288
+ channels,
1289
+ num_levels,
1290
+ num_query,
1291
+ num_point,
1292
+ grad_value,
1293
+ grad_sampling_loc,
1294
+ grad_attn_weight);
1295
+ }
1296
+ else
1297
+ {
1298
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v2<scalar_t>
1299
+ <<<GET_BLOCKS(num_actual_kernels, num_threads), num_threads,
1300
+ num_threads*3*sizeof(scalar_t), stream>>>(
1301
+ num_kernels,
1302
+ grad_col,
1303
+ data_value,
1304
+ data_spatial_shapes,
1305
+ data_level_start_index,
1306
+ data_sampling_loc,
1307
+ data_attn_weight,
1308
+ batch_size,
1309
+ spatial_size,
1310
+ num_heads,
1311
+ channels,
1312
+ num_levels,
1313
+ num_query,
1314
+ num_point,
1315
+ grad_value,
1316
+ grad_sampling_loc,
1317
+ grad_attn_weight);
1318
+ }
1319
+ }
1320
+ }
1321
+ cudaError_t err = cudaGetLastError();
1322
+ if (err != cudaSuccess)
1323
+ {
1324
+ printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
1325
+ }
1326
+
1327
+ }
groundingdino/models/GroundingDINO/csrc/cuda_version.cu ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ #include <cuda_runtime_api.h>
2
+
3
+ namespace groundingdino {
4
+ int get_cudart_version() {
5
+ return CUDART_VERSION;
6
+ }
7
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/csrc/vision.cpp ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+
3
+ #include "MsDeformAttn/ms_deform_attn.h"
4
+
5
+ namespace groundingdino {
6
+
7
+ #ifdef WITH_CUDA
8
+ extern int get_cudart_version();
9
+ #endif
10
+
11
+ std::string get_cuda_version() {
12
+ #ifdef WITH_CUDA
13
+ std::ostringstream oss;
14
+
15
+ // copied from
16
+ // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/cuda/detail/CUDAHooks.cpp#L231
17
+ auto printCudaStyleVersion = [&](int v) {
18
+ oss << (v / 1000) << "." << (v / 10 % 100);
19
+ if (v % 10 != 0) {
20
+ oss << "." << (v % 10);
21
+ }
22
+ };
23
+ printCudaStyleVersion(get_cudart_version());
24
+ return oss.str();
25
+ #else
26
+ return std::string("not available");
27
+ #endif
28
+ }
29
+
30
+ // similar to
31
+ // https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Version.cpp
32
+ std::string get_compiler_version() {
33
+ std::ostringstream ss;
34
+ #if defined(__GNUC__)
35
+ #ifndef __clang__
36
+ { ss << "GCC " << __GNUC__ << "." << __GNUC_MINOR__; }
37
+ #endif
38
+ #endif
39
+
40
+ #if defined(__clang_major__)
41
+ {
42
+ ss << "clang " << __clang_major__ << "." << __clang_minor__ << "."
43
+ << __clang_patchlevel__;
44
+ }
45
+ #endif
46
+
47
+ #if defined(_MSC_VER)
48
+ { ss << "MSVC " << _MSC_FULL_VER; }
49
+ #endif
50
+ return ss.str();
51
+ }
52
+
53
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
54
+ m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
55
+ m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
56
+ }
57
+
58
+ } // namespace groundingdino
groundingdino/models/GroundingDINO/fuse_modules.py ADDED
@@ -0,0 +1,297 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+ from timm.models.layers import DropPath
12
+
13
+
14
+ class FeatureResizer(nn.Module):
15
+ """
16
+ This class takes as input a set of embeddings of dimension C1 and outputs a set of
17
+ embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
18
+ """
19
+
20
+ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
21
+ super().__init__()
22
+ self.do_ln = do_ln
23
+ # Object feature encoding
24
+ self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
25
+ self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
26
+ self.dropout = nn.Dropout(dropout)
27
+
28
+ def forward(self, encoder_features):
29
+ x = self.fc(encoder_features)
30
+ if self.do_ln:
31
+ x = self.layer_norm(x)
32
+ output = self.dropout(x)
33
+ return output
34
+
35
+
36
+ def l1norm(X, dim, eps=1e-8):
37
+ """L1-normalize columns of X"""
38
+ norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
39
+ X = torch.div(X, norm)
40
+ return X
41
+
42
+
43
+ def l2norm(X, dim, eps=1e-8):
44
+ """L2-normalize columns of X"""
45
+ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
46
+ X = torch.div(X, norm)
47
+ return X
48
+
49
+
50
+ def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
51
+ """
52
+ query: (n_context, queryL, d)
53
+ context: (n_context, sourceL, d)
54
+ """
55
+ batch_size_q, queryL = query.size(0), query.size(1)
56
+ batch_size, sourceL = context.size(0), context.size(1)
57
+
58
+ # Get attention
59
+ # --> (batch, d, queryL)
60
+ queryT = torch.transpose(query, 1, 2)
61
+
62
+ # (batch, sourceL, d)(batch, d, queryL)
63
+ # --> (batch, sourceL, queryL)
64
+ attn = torch.bmm(context, queryT)
65
+ if raw_feature_norm == "softmax":
66
+ # --> (batch*sourceL, queryL)
67
+ attn = attn.view(batch_size * sourceL, queryL)
68
+ attn = nn.Softmax()(attn)
69
+ # --> (batch, sourceL, queryL)
70
+ attn = attn.view(batch_size, sourceL, queryL)
71
+ elif raw_feature_norm == "l2norm":
72
+ attn = l2norm(attn, 2)
73
+ elif raw_feature_norm == "clipped_l2norm":
74
+ attn = nn.LeakyReLU(0.1)(attn)
75
+ attn = l2norm(attn, 2)
76
+ else:
77
+ raise ValueError("unknown first norm type:", raw_feature_norm)
78
+ # --> (batch, queryL, sourceL)
79
+ attn = torch.transpose(attn, 1, 2).contiguous()
80
+ # --> (batch*queryL, sourceL)
81
+ attn = attn.view(batch_size * queryL, sourceL)
82
+ attn = nn.Softmax()(attn * smooth)
83
+ # --> (batch, queryL, sourceL)
84
+ attn = attn.view(batch_size, queryL, sourceL)
85
+ # --> (batch, sourceL, queryL)
86
+ attnT = torch.transpose(attn, 1, 2).contiguous()
87
+
88
+ # --> (batch, d, sourceL)
89
+ contextT = torch.transpose(context, 1, 2)
90
+ # (batch x d x sourceL)(batch x sourceL x queryL)
91
+ # --> (batch, d, queryL)
92
+ weightedContext = torch.bmm(contextT, attnT)
93
+ # --> (batch, queryL, d)
94
+ weightedContext = torch.transpose(weightedContext, 1, 2)
95
+
96
+ return weightedContext, attnT
97
+
98
+
99
+ class BiMultiHeadAttention(nn.Module):
100
+ def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
101
+ super(BiMultiHeadAttention, self).__init__()
102
+
103
+ self.embed_dim = embed_dim
104
+ self.num_heads = num_heads
105
+ self.head_dim = embed_dim // num_heads
106
+ self.v_dim = v_dim
107
+ self.l_dim = l_dim
108
+
109
+ assert (
110
+ self.head_dim * self.num_heads == self.embed_dim
111
+ ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
112
+ self.scale = self.head_dim ** (-0.5)
113
+ self.dropout = dropout
114
+
115
+ self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
116
+ self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
117
+ self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
118
+ self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
119
+
120
+ self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
121
+ self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
122
+
123
+ self.stable_softmax_2d = True
124
+ self.clamp_min_for_underflow = True
125
+ self.clamp_max_for_overflow = True
126
+
127
+ self._reset_parameters()
128
+
129
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
130
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
131
+
132
+ def _reset_parameters(self):
133
+ nn.init.xavier_uniform_(self.v_proj.weight)
134
+ self.v_proj.bias.data.fill_(0)
135
+ nn.init.xavier_uniform_(self.l_proj.weight)
136
+ self.l_proj.bias.data.fill_(0)
137
+ nn.init.xavier_uniform_(self.values_v_proj.weight)
138
+ self.values_v_proj.bias.data.fill_(0)
139
+ nn.init.xavier_uniform_(self.values_l_proj.weight)
140
+ self.values_l_proj.bias.data.fill_(0)
141
+ nn.init.xavier_uniform_(self.out_v_proj.weight)
142
+ self.out_v_proj.bias.data.fill_(0)
143
+ nn.init.xavier_uniform_(self.out_l_proj.weight)
144
+ self.out_l_proj.bias.data.fill_(0)
145
+
146
+ def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
147
+ """_summary_
148
+
149
+ Args:
150
+ v (_type_): bs, n_img, dim
151
+ l (_type_): bs, n_text, dim
152
+ attention_mask_v (_type_, optional): _description_. bs, n_img
153
+ attention_mask_l (_type_, optional): _description_. bs, n_text
154
+
155
+ Returns:
156
+ _type_: _description_
157
+ """
158
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
159
+ # import ipdb; ipdb.set_trace()
160
+ bsz, tgt_len, _ = v.size()
161
+
162
+ query_states = self.v_proj(v) * self.scale
163
+ key_states = self._shape(self.l_proj(l), -1, bsz)
164
+ value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
165
+ value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
166
+
167
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
168
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
169
+ key_states = key_states.view(*proj_shape)
170
+ value_v_states = value_v_states.view(*proj_shape)
171
+ value_l_states = value_l_states.view(*proj_shape)
172
+
173
+ src_len = key_states.size(1)
174
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
175
+
176
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
177
+ raise ValueError(
178
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
179
+ )
180
+
181
+ if self.stable_softmax_2d:
182
+ attn_weights = attn_weights - attn_weights.max()
183
+
184
+ if self.clamp_min_for_underflow:
185
+ attn_weights = torch.clamp(
186
+ attn_weights, min=-50000
187
+ ) # Do not increase -50000, data type half has quite limited range
188
+ if self.clamp_max_for_overflow:
189
+ attn_weights = torch.clamp(
190
+ attn_weights, max=50000
191
+ ) # Do not increase 50000, data type half has quite limited range
192
+
193
+ attn_weights_T = attn_weights.transpose(1, 2)
194
+ attn_weights_l = attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[0]
195
+ if self.clamp_min_for_underflow:
196
+ attn_weights_l = torch.clamp(
197
+ attn_weights_l, min=-50000
198
+ ) # Do not increase -50000, data type half has quite limited range
199
+ if self.clamp_max_for_overflow:
200
+ attn_weights_l = torch.clamp(
201
+ attn_weights_l, max=50000
202
+ ) # Do not increase 50000, data type half has quite limited range
203
+
204
+ # mask vison for language
205
+ if attention_mask_v is not None:
206
+ attention_mask_v = (
207
+ attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
208
+ )
209
+ attn_weights_l.masked_fill_(attention_mask_v, float("-inf"))
210
+
211
+ attn_weights_l = attn_weights_l.softmax(dim=-1)
212
+
213
+ # mask language for vision
214
+ if attention_mask_l is not None:
215
+ attention_mask_l = (
216
+ attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
217
+ )
218
+ attn_weights.masked_fill_(attention_mask_l, float("-inf"))
219
+ attn_weights_v = attn_weights.softmax(dim=-1)
220
+
221
+ attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
222
+ attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
223
+
224
+ attn_output_v = torch.bmm(attn_probs_v, value_l_states)
225
+ attn_output_l = torch.bmm(attn_probs_l, value_v_states)
226
+
227
+ if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
228
+ raise ValueError(
229
+ f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
230
+ )
231
+
232
+ if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
233
+ raise ValueError(
234
+ f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
235
+ )
236
+
237
+ attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
238
+ attn_output_v = attn_output_v.transpose(1, 2)
239
+ attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
240
+
241
+ attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
242
+ attn_output_l = attn_output_l.transpose(1, 2)
243
+ attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
244
+
245
+ attn_output_v = self.out_v_proj(attn_output_v)
246
+ attn_output_l = self.out_l_proj(attn_output_l)
247
+
248
+ return attn_output_v, attn_output_l
249
+
250
+
251
+ # Bi-Direction MHA (text->image, image->text)
252
+ class BiAttentionBlock(nn.Module):
253
+ def __init__(
254
+ self,
255
+ v_dim,
256
+ l_dim,
257
+ embed_dim,
258
+ num_heads,
259
+ dropout=0.1,
260
+ drop_path=0.0,
261
+ init_values=1e-4,
262
+ cfg=None,
263
+ ):
264
+ """
265
+ Inputs:
266
+ embed_dim - Dimensionality of input and attention feature vectors
267
+ hidden_dim - Dimensionality of hidden layer in feed-forward network
268
+ (usually 2-4x larger than embed_dim)
269
+ num_heads - Number of heads to use in the Multi-Head Attention block
270
+ dropout - Amount of dropout to apply in the feed-forward network
271
+ """
272
+ super(BiAttentionBlock, self).__init__()
273
+
274
+ # pre layer norm
275
+ self.layer_norm_v = nn.LayerNorm(v_dim)
276
+ self.layer_norm_l = nn.LayerNorm(l_dim)
277
+ self.attn = BiMultiHeadAttention(
278
+ v_dim=v_dim, l_dim=l_dim, embed_dim=embed_dim, num_heads=num_heads, dropout=dropout
279
+ )
280
+
281
+ # add layer scale for training stability
282
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
283
+ self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True)
284
+ self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True)
285
+
286
+ def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
287
+ v = self.layer_norm_v(v)
288
+ l = self.layer_norm_l(l)
289
+ delta_v, delta_l = self.attn(
290
+ v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l
291
+ )
292
+ # v, l = v + delta_v, l + delta_l
293
+ v = v + self.drop_path(self.gamma_v * delta_v)
294
+ l = l + self.drop_path(self.gamma_l * delta_l)
295
+ return v, l
296
+
297
+ # def forward(self, v:List[torch.Tensor], l, attention_mask_v=None, attention_mask_l=None)
groundingdino/models/GroundingDINO/groundingdino.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Conditional DETR model and criterion classes.
8
+ # Copyright (c) 2021 Microsoft. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------
11
+ # Modified from DETR (https://github.com/facebookresearch/detr)
12
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
13
+ # ------------------------------------------------------------------------
14
+ # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
15
+ # Copyright (c) 2020 SenseTime. All Rights Reserved.
16
+ # ------------------------------------------------------------------------
17
+ import copy
18
+ from typing import List
19
+
20
+ import torch
21
+ import torch.nn.functional as F
22
+ from torch import nn
23
+ from torchvision.ops.boxes import nms
24
+ from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
25
+
26
+ from groundingdino.util import box_ops, get_tokenlizer
27
+ from groundingdino.util.misc import (
28
+ NestedTensor,
29
+ accuracy,
30
+ get_world_size,
31
+ interpolate,
32
+ inverse_sigmoid,
33
+ is_dist_avail_and_initialized,
34
+ nested_tensor_from_tensor_list,
35
+ )
36
+ from groundingdino.util.utils import get_phrases_from_posmap
37
+ from groundingdino.util.visualizer import COCOVisualizer
38
+ from groundingdino.util.vl_utils import create_positive_map_from_span
39
+
40
+ from ..registry import MODULE_BUILD_FUNCS
41
+ from .backbone import build_backbone
42
+ from .bertwarper import (
43
+ BertModelWarper,
44
+ generate_masks_with_special_tokens,
45
+ generate_masks_with_special_tokens_and_transfer_map,
46
+ )
47
+ from .transformer import build_transformer
48
+ from .utils import MLP, ContrastiveEmbed, sigmoid_focal_loss
49
+
50
+
51
+ class GroundingDINO(nn.Module):
52
+ """This is the Cross-Attention Detector module that performs object detection"""
53
+
54
+ def __init__(
55
+ self,
56
+ backbone,
57
+ transformer,
58
+ num_queries,
59
+ aux_loss=False,
60
+ iter_update=False,
61
+ query_dim=2,
62
+ num_feature_levels=1,
63
+ nheads=8,
64
+ # two stage
65
+ two_stage_type="no", # ['no', 'standard']
66
+ dec_pred_bbox_embed_share=True,
67
+ two_stage_class_embed_share=True,
68
+ two_stage_bbox_embed_share=True,
69
+ num_patterns=0,
70
+ dn_number=100,
71
+ dn_box_noise_scale=0.4,
72
+ dn_label_noise_ratio=0.5,
73
+ dn_labelbook_size=100,
74
+ text_encoder_type="bert-base-uncased",
75
+ sub_sentence_present=True,
76
+ max_text_len=256,
77
+ ):
78
+ """Initializes the model.
79
+ Parameters:
80
+ backbone: torch module of the backbone to be used. See backbone.py
81
+ transformer: torch module of the transformer architecture. See transformer.py
82
+ num_queries: number of object queries, ie detection slot. This is the maximal number of objects
83
+ Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
84
+ aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
85
+ """
86
+ super().__init__()
87
+ self.num_queries = num_queries
88
+ self.transformer = transformer
89
+ self.hidden_dim = hidden_dim = transformer.d_model
90
+ self.num_feature_levels = num_feature_levels
91
+ self.nheads = nheads
92
+ self.max_text_len = 256
93
+ self.sub_sentence_present = sub_sentence_present
94
+
95
+ # setting query dim
96
+ self.query_dim = query_dim
97
+ assert query_dim == 4
98
+
99
+ # for dn training
100
+ self.num_patterns = num_patterns
101
+ self.dn_number = dn_number
102
+ self.dn_box_noise_scale = dn_box_noise_scale
103
+ self.dn_label_noise_ratio = dn_label_noise_ratio
104
+ self.dn_labelbook_size = dn_labelbook_size
105
+
106
+ # bert
107
+ self.tokenizer = get_tokenlizer.get_tokenlizer(text_encoder_type)
108
+ self.bert = get_tokenlizer.get_pretrained_language_model(text_encoder_type)
109
+ self.bert.pooler.dense.weight.requires_grad_(False)
110
+ self.bert.pooler.dense.bias.requires_grad_(False)
111
+ self.bert = BertModelWarper(bert_model=self.bert)
112
+
113
+ self.feat_map = nn.Linear(self.bert.config.hidden_size, self.hidden_dim, bias=True)
114
+ nn.init.constant_(self.feat_map.bias.data, 0)
115
+ nn.init.xavier_uniform_(self.feat_map.weight.data)
116
+ # freeze
117
+
118
+ # special tokens
119
+ self.specical_tokens = self.tokenizer.convert_tokens_to_ids(["[CLS]", "[SEP]", ".", "?"])
120
+
121
+ # prepare input projection layers
122
+ if num_feature_levels > 1:
123
+ num_backbone_outs = len(backbone.num_channels)
124
+ input_proj_list = []
125
+ for _ in range(num_backbone_outs):
126
+ in_channels = backbone.num_channels[_]
127
+ input_proj_list.append(
128
+ nn.Sequential(
129
+ nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
130
+ nn.GroupNorm(32, hidden_dim),
131
+ )
132
+ )
133
+ for _ in range(num_feature_levels - num_backbone_outs):
134
+ input_proj_list.append(
135
+ nn.Sequential(
136
+ nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
137
+ nn.GroupNorm(32, hidden_dim),
138
+ )
139
+ )
140
+ in_channels = hidden_dim
141
+ self.input_proj = nn.ModuleList(input_proj_list)
142
+ else:
143
+ assert two_stage_type == "no", "two_stage_type should be no if num_feature_levels=1 !!!"
144
+ self.input_proj = nn.ModuleList(
145
+ [
146
+ nn.Sequential(
147
+ nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
148
+ nn.GroupNorm(32, hidden_dim),
149
+ )
150
+ ]
151
+ )
152
+
153
+ self.backbone = backbone
154
+ self.aux_loss = aux_loss
155
+ self.box_pred_damping = box_pred_damping = None
156
+
157
+ self.iter_update = iter_update
158
+ assert iter_update, "Why not iter_update?"
159
+
160
+ # prepare pred layers
161
+ self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
162
+ # prepare class & box embed
163
+ _class_embed = ContrastiveEmbed()
164
+
165
+ _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
166
+ nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
167
+ nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
168
+
169
+ if dec_pred_bbox_embed_share:
170
+ box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
171
+ else:
172
+ box_embed_layerlist = [
173
+ copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)
174
+ ]
175
+ class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
176
+ self.bbox_embed = nn.ModuleList(box_embed_layerlist)
177
+ self.class_embed = nn.ModuleList(class_embed_layerlist)
178
+ self.transformer.decoder.bbox_embed = self.bbox_embed
179
+ self.transformer.decoder.class_embed = self.class_embed
180
+
181
+ # two stage
182
+ self.two_stage_type = two_stage_type
183
+ assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
184
+ two_stage_type
185
+ )
186
+ if two_stage_type != "no":
187
+ if two_stage_bbox_embed_share:
188
+ assert dec_pred_bbox_embed_share
189
+ self.transformer.enc_out_bbox_embed = _bbox_embed
190
+ else:
191
+ self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
192
+
193
+ if two_stage_class_embed_share:
194
+ assert dec_pred_bbox_embed_share
195
+ self.transformer.enc_out_class_embed = _class_embed
196
+ else:
197
+ self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
198
+
199
+ self.refpoint_embed = None
200
+
201
+ self._reset_parameters()
202
+
203
+ def _reset_parameters(self):
204
+ # init input_proj
205
+ for proj in self.input_proj:
206
+ nn.init.xavier_uniform_(proj[0].weight, gain=1)
207
+ nn.init.constant_(proj[0].bias, 0)
208
+
209
+ def set_image_tensor(self, samples: NestedTensor):
210
+ if isinstance(samples, (list, torch.Tensor)):
211
+ samples = nested_tensor_from_tensor_list(samples)
212
+ self.features, self.poss = self.backbone(samples)
213
+
214
+ def unset_image_tensor(self):
215
+ if hasattr(self, 'features'):
216
+ del self.features
217
+ if hasattr(self,'poss'):
218
+ del self.poss
219
+
220
+ def set_image_features(self, features , poss):
221
+ self.features = features
222
+ self.poss = poss
223
+
224
+ def init_ref_points(self, use_num_queries):
225
+ self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
226
+
227
+ def forward(self, samples: NestedTensor, targets: List = None, **kw):
228
+ """The forward expects a NestedTensor, which consists of:
229
+ - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
230
+ - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
231
+
232
+ It returns a dict with the following elements:
233
+ - "pred_logits": the classification logits (including no-object) for all queries.
234
+ Shape= [batch_size x num_queries x num_classes]
235
+ - "pred_boxes": The normalized boxes coordinates for all queries, represented as
236
+ (center_x, center_y, width, height). These values are normalized in [0, 1],
237
+ relative to the size of each individual image (disregarding possible padding).
238
+ See PostProcess for information on how to retrieve the unnormalized bounding box.
239
+ - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
240
+ dictionnaries containing the two above keys for each decoder layer.
241
+ """
242
+ if targets is None:
243
+ captions = kw["captions"]
244
+ else:
245
+ captions = [t["caption"] for t in targets]
246
+
247
+ # encoder texts
248
+ tokenized = self.tokenizer(captions, padding="longest", return_tensors="pt").to(
249
+ samples.device
250
+ )
251
+ (
252
+ text_self_attention_masks,
253
+ position_ids,
254
+ cate_to_token_mask_list,
255
+ ) = generate_masks_with_special_tokens_and_transfer_map(
256
+ tokenized, self.specical_tokens, self.tokenizer
257
+ )
258
+
259
+ if text_self_attention_masks.shape[1] > self.max_text_len:
260
+ text_self_attention_masks = text_self_attention_masks[
261
+ :, : self.max_text_len, : self.max_text_len
262
+ ]
263
+ position_ids = position_ids[:, : self.max_text_len]
264
+ tokenized["input_ids"] = tokenized["input_ids"][:, : self.max_text_len]
265
+ tokenized["attention_mask"] = tokenized["attention_mask"][:, : self.max_text_len]
266
+ tokenized["token_type_ids"] = tokenized["token_type_ids"][:, : self.max_text_len]
267
+
268
+ # extract text embeddings
269
+ if self.sub_sentence_present:
270
+ tokenized_for_encoder = {k: v for k, v in tokenized.items() if k != "attention_mask"}
271
+ tokenized_for_encoder["attention_mask"] = text_self_attention_masks
272
+ tokenized_for_encoder["position_ids"] = position_ids
273
+ else:
274
+ # import ipdb; ipdb.set_trace()
275
+ tokenized_for_encoder = tokenized
276
+
277
+ bert_output = self.bert(**tokenized_for_encoder) # bs, 195, 768
278
+
279
+ encoded_text = self.feat_map(bert_output["last_hidden_state"]) # bs, 195, d_model
280
+ text_token_mask = tokenized.attention_mask.bool() # bs, 195
281
+ # text_token_mask: True for nomask, False for mask
282
+ # text_self_attention_masks: True for nomask, False for mask
283
+
284
+ if encoded_text.shape[1] > self.max_text_len:
285
+ encoded_text = encoded_text[:, : self.max_text_len, :]
286
+ text_token_mask = text_token_mask[:, : self.max_text_len]
287
+ position_ids = position_ids[:, : self.max_text_len]
288
+ text_self_attention_masks = text_self_attention_masks[
289
+ :, : self.max_text_len, : self.max_text_len
290
+ ]
291
+
292
+ text_dict = {
293
+ "encoded_text": encoded_text, # bs, 195, d_model
294
+ "text_token_mask": text_token_mask, # bs, 195
295
+ "position_ids": position_ids, # bs, 195
296
+ "text_self_attention_masks": text_self_attention_masks, # bs, 195,195
297
+ }
298
+
299
+ # import ipdb; ipdb.set_trace()
300
+ if isinstance(samples, (list, torch.Tensor)):
301
+ samples = nested_tensor_from_tensor_list(samples)
302
+ if not hasattr(self, 'features') or not hasattr(self, 'poss'):
303
+ self.set_image_tensor(samples)
304
+
305
+ srcs = []
306
+ masks = []
307
+ for l, feat in enumerate(self.features):
308
+ src, mask = feat.decompose()
309
+ srcs.append(self.input_proj[l](src))
310
+ masks.append(mask)
311
+ assert mask is not None
312
+ if self.num_feature_levels > len(srcs):
313
+ _len_srcs = len(srcs)
314
+ for l in range(_len_srcs, self.num_feature_levels):
315
+ if l == _len_srcs:
316
+ src = self.input_proj[l](self.features[-1].tensors)
317
+ else:
318
+ src = self.input_proj[l](srcs[-1])
319
+ m = samples.mask
320
+ mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
321
+ pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
322
+ srcs.append(src)
323
+ masks.append(mask)
324
+ self.poss.append(pos_l)
325
+
326
+ input_query_bbox = input_query_label = attn_mask = dn_meta = None
327
+ hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(
328
+ srcs, masks, input_query_bbox, self.poss, input_query_label, attn_mask, text_dict
329
+ )
330
+
331
+ # deformable-detr-like anchor update
332
+ outputs_coord_list = []
333
+ for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(
334
+ zip(reference[:-1], self.bbox_embed, hs)
335
+ ):
336
+ layer_delta_unsig = layer_bbox_embed(layer_hs)
337
+ layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
338
+ layer_outputs_unsig = layer_outputs_unsig.sigmoid()
339
+ outputs_coord_list.append(layer_outputs_unsig)
340
+ outputs_coord_list = torch.stack(outputs_coord_list)
341
+
342
+ # output
343
+ outputs_class = torch.stack(
344
+ [
345
+ layer_cls_embed(layer_hs, text_dict)
346
+ for layer_cls_embed, layer_hs in zip(self.class_embed, hs)
347
+ ]
348
+ )
349
+ out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord_list[-1]}
350
+
351
+ # # for intermediate outputs
352
+ # if self.aux_loss:
353
+ # out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord_list)
354
+
355
+ # # for encoder output
356
+ # if hs_enc is not None:
357
+ # # prepare intermediate outputs
358
+ # interm_coord = ref_enc[-1]
359
+ # interm_class = self.transformer.enc_out_class_embed(hs_enc[-1], text_dict)
360
+ # out['interm_outputs'] = {'pred_logits': interm_class, 'pred_boxes': interm_coord}
361
+ # out['interm_outputs_for_matching_pre'] = {'pred_logits': interm_class, 'pred_boxes': init_box_proposal}
362
+ unset_image_tensor = kw.get('unset_image_tensor', True)
363
+ if unset_image_tensor:
364
+ self.unset_image_tensor() ## If necessary
365
+ return out
366
+
367
+ @torch.jit.unused
368
+ def _set_aux_loss(self, outputs_class, outputs_coord):
369
+ # this is a workaround to make torchscript happy, as torchscript
370
+ # doesn't support dictionary with non-homogeneous values, such
371
+ # as a dict having both a Tensor and a list.
372
+ return [
373
+ {"pred_logits": a, "pred_boxes": b}
374
+ for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
375
+ ]
376
+
377
+
378
+ @MODULE_BUILD_FUNCS.registe_with_name(module_name="groundingdino")
379
+ def build_groundingdino(args):
380
+
381
+ backbone = build_backbone(args)
382
+ transformer = build_transformer(args)
383
+
384
+ dn_labelbook_size = args.dn_labelbook_size
385
+ dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
386
+ sub_sentence_present = args.sub_sentence_present
387
+
388
+ model = GroundingDINO(
389
+ backbone,
390
+ transformer,
391
+ num_queries=args.num_queries,
392
+ aux_loss=True,
393
+ iter_update=True,
394
+ query_dim=4,
395
+ num_feature_levels=args.num_feature_levels,
396
+ nheads=args.nheads,
397
+ dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
398
+ two_stage_type=args.two_stage_type,
399
+ two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
400
+ two_stage_class_embed_share=args.two_stage_class_embed_share,
401
+ num_patterns=args.num_patterns,
402
+ dn_number=0,
403
+ dn_box_noise_scale=args.dn_box_noise_scale,
404
+ dn_label_noise_ratio=args.dn_label_noise_ratio,
405
+ dn_labelbook_size=dn_labelbook_size,
406
+ text_encoder_type=args.text_encoder_type,
407
+ sub_sentence_present=sub_sentence_present,
408
+ max_text_len=args.max_text_len,
409
+ )
410
+
411
+ return model
412
+
groundingdino/models/GroundingDINO/ms_deform_attn.py ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Deformable DETR
8
+ # Copyright (c) 2020 SenseTime. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------------------------------
11
+ # Modified from:
12
+ # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/functions/ms_deform_attn_func.py
13
+ # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/modules/ms_deform_attn.py
14
+ # https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/multi_scale_deform_attn.py
15
+ # ------------------------------------------------------------------------------------------------
16
+
17
+ import math
18
+ import warnings
19
+ from typing import Optional
20
+
21
+ import torch
22
+ import torch.nn as nn
23
+ import torch.nn.functional as F
24
+ from torch.autograd import Function
25
+ from torch.autograd.function import once_differentiable
26
+ from torch.nn.init import constant_, xavier_uniform_
27
+
28
+ try:
29
+ from groundingdino import _C
30
+ except:
31
+ warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only!")
32
+
33
+
34
+ # helpers
35
+ def _is_power_of_2(n):
36
+ if (not isinstance(n, int)) or (n < 0):
37
+ raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
38
+ return (n & (n - 1) == 0) and n != 0
39
+
40
+
41
+ class MultiScaleDeformableAttnFunction(Function):
42
+ @staticmethod
43
+ def forward(
44
+ ctx,
45
+ value,
46
+ value_spatial_shapes,
47
+ value_level_start_index,
48
+ sampling_locations,
49
+ attention_weights,
50
+ im2col_step,
51
+ ):
52
+ ctx.im2col_step = im2col_step
53
+ output = _C.ms_deform_attn_forward(
54
+ value,
55
+ value_spatial_shapes,
56
+ value_level_start_index,
57
+ sampling_locations,
58
+ attention_weights,
59
+ ctx.im2col_step,
60
+ )
61
+ ctx.save_for_backward(
62
+ value,
63
+ value_spatial_shapes,
64
+ value_level_start_index,
65
+ sampling_locations,
66
+ attention_weights,
67
+ )
68
+ return output
69
+
70
+ @staticmethod
71
+ @once_differentiable
72
+ def backward(ctx, grad_output):
73
+ (
74
+ value,
75
+ value_spatial_shapes,
76
+ value_level_start_index,
77
+ sampling_locations,
78
+ attention_weights,
79
+ ) = ctx.saved_tensors
80
+ grad_value, grad_sampling_loc, grad_attn_weight = _C.ms_deform_attn_backward(
81
+ value,
82
+ value_spatial_shapes,
83
+ value_level_start_index,
84
+ sampling_locations,
85
+ attention_weights,
86
+ grad_output,
87
+ ctx.im2col_step,
88
+ )
89
+
90
+ return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
91
+
92
+
93
+ def multi_scale_deformable_attn_pytorch(
94
+ value: torch.Tensor,
95
+ value_spatial_shapes: torch.Tensor,
96
+ sampling_locations: torch.Tensor,
97
+ attention_weights: torch.Tensor,
98
+ ) -> torch.Tensor:
99
+
100
+ bs, _, num_heads, embed_dims = value.shape
101
+ _, num_queries, num_heads, num_levels, num_points, _ = sampling_locations.shape
102
+ value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
103
+ sampling_grids = 2 * sampling_locations - 1
104
+ sampling_value_list = []
105
+ for level, (H_, W_) in enumerate(value_spatial_shapes):
106
+ # bs, H_*W_, num_heads, embed_dims ->
107
+ # bs, H_*W_, num_heads*embed_dims ->
108
+ # bs, num_heads*embed_dims, H_*W_ ->
109
+ # bs*num_heads, embed_dims, H_, W_
110
+ value_l_ = (
111
+ value_list[level].flatten(2).transpose(1, 2).reshape(bs * num_heads, embed_dims, H_, W_)
112
+ )
113
+ # bs, num_queries, num_heads, num_points, 2 ->
114
+ # bs, num_heads, num_queries, num_points, 2 ->
115
+ # bs*num_heads, num_queries, num_points, 2
116
+ sampling_grid_l_ = sampling_grids[:, :, :, level].transpose(1, 2).flatten(0, 1)
117
+ # bs*num_heads, embed_dims, num_queries, num_points
118
+ sampling_value_l_ = F.grid_sample(
119
+ value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
120
+ )
121
+ sampling_value_list.append(sampling_value_l_)
122
+ # (bs, num_queries, num_heads, num_levels, num_points) ->
123
+ # (bs, num_heads, num_queries, num_levels, num_points) ->
124
+ # (bs, num_heads, 1, num_queries, num_levels*num_points)
125
+ attention_weights = attention_weights.transpose(1, 2).reshape(
126
+ bs * num_heads, 1, num_queries, num_levels * num_points
127
+ )
128
+ output = (
129
+ (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights)
130
+ .sum(-1)
131
+ .view(bs, num_heads * embed_dims, num_queries)
132
+ )
133
+ return output.transpose(1, 2).contiguous()
134
+
135
+
136
+ class MultiScaleDeformableAttention(nn.Module):
137
+ """Multi-Scale Deformable Attention Module used in Deformable-DETR
138
+
139
+ `Deformable DETR: Deformable Transformers for End-to-End Object Detection.
140
+ <https://arxiv.org/pdf/2010.04159.pdf>`_.
141
+
142
+ Args:
143
+ embed_dim (int): The embedding dimension of Attention. Default: 256.
144
+ num_heads (int): The number of attention heads. Default: 8.
145
+ num_levels (int): The number of feature map used in Attention. Default: 4.
146
+ num_points (int): The number of sampling points for each query
147
+ in each head. Default: 4.
148
+ img2col_steps (int): The step used in image_to_column. Defualt: 64.
149
+ dropout (float): Dropout layer used in output. Default: 0.1.
150
+ batch_first (bool): if ``True``, then the input and output tensor will be
151
+ provided as `(bs, n, embed_dim)`. Default: False. `(n, bs, embed_dim)`
152
+ """
153
+
154
+ def __init__(
155
+ self,
156
+ embed_dim: int = 256,
157
+ num_heads: int = 8,
158
+ num_levels: int = 4,
159
+ num_points: int = 4,
160
+ img2col_step: int = 64,
161
+ batch_first: bool = False,
162
+ ):
163
+ super().__init__()
164
+ if embed_dim % num_heads != 0:
165
+ raise ValueError(
166
+ "embed_dim must be divisible by num_heads, but got {} and {}".format(
167
+ embed_dim, num_heads
168
+ )
169
+ )
170
+ head_dim = embed_dim // num_heads
171
+
172
+ self.batch_first = batch_first
173
+
174
+ if not _is_power_of_2(head_dim):
175
+ warnings.warn(
176
+ """
177
+ You'd better set d_model in MSDeformAttn to make sure that
178
+ each dim of the attention head a power of 2, which is more efficient.
179
+ """
180
+ )
181
+
182
+ self.im2col_step = img2col_step
183
+ self.embed_dim = embed_dim
184
+ self.num_heads = num_heads
185
+ self.num_levels = num_levels
186
+ self.num_points = num_points
187
+ self.sampling_offsets = nn.Linear(embed_dim, num_heads * num_levels * num_points * 2)
188
+ self.attention_weights = nn.Linear(embed_dim, num_heads * num_levels * num_points)
189
+ self.value_proj = nn.Linear(embed_dim, embed_dim)
190
+ self.output_proj = nn.Linear(embed_dim, embed_dim)
191
+
192
+ self.init_weights()
193
+
194
+ def _reset_parameters(self):
195
+ return self.init_weights()
196
+
197
+ def init_weights(self):
198
+ """
199
+ Default initialization for Parameters of Module.
200
+ """
201
+ constant_(self.sampling_offsets.weight.data, 0.0)
202
+ thetas = torch.arange(self.num_heads, dtype=torch.float32) * (
203
+ 2.0 * math.pi / self.num_heads
204
+ )
205
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
206
+ grid_init = (
207
+ (grid_init / grid_init.abs().max(-1, keepdim=True)[0])
208
+ .view(self.num_heads, 1, 1, 2)
209
+ .repeat(1, self.num_levels, self.num_points, 1)
210
+ )
211
+ for i in range(self.num_points):
212
+ grid_init[:, :, i, :] *= i + 1
213
+ with torch.no_grad():
214
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
215
+ constant_(self.attention_weights.weight.data, 0.0)
216
+ constant_(self.attention_weights.bias.data, 0.0)
217
+ xavier_uniform_(self.value_proj.weight.data)
218
+ constant_(self.value_proj.bias.data, 0.0)
219
+ xavier_uniform_(self.output_proj.weight.data)
220
+ constant_(self.output_proj.bias.data, 0.0)
221
+
222
+ def freeze_sampling_offsets(self):
223
+ print("Freeze sampling offsets")
224
+ self.sampling_offsets.weight.requires_grad = False
225
+ self.sampling_offsets.bias.requires_grad = False
226
+
227
+ def freeze_attention_weights(self):
228
+ print("Freeze attention weights")
229
+ self.attention_weights.weight.requires_grad = False
230
+ self.attention_weights.bias.requires_grad = False
231
+
232
+ def forward(
233
+ self,
234
+ query: torch.Tensor,
235
+ key: Optional[torch.Tensor] = None,
236
+ value: Optional[torch.Tensor] = None,
237
+ query_pos: Optional[torch.Tensor] = None,
238
+ key_padding_mask: Optional[torch.Tensor] = None,
239
+ reference_points: Optional[torch.Tensor] = None,
240
+ spatial_shapes: Optional[torch.Tensor] = None,
241
+ level_start_index: Optional[torch.Tensor] = None,
242
+ **kwargs
243
+ ) -> torch.Tensor:
244
+
245
+ """Forward Function of MultiScaleDeformableAttention
246
+
247
+ Args:
248
+ query (torch.Tensor): Query embeddings with shape
249
+ `(num_query, bs, embed_dim)`
250
+ key (torch.Tensor): Key embeddings with shape
251
+ `(num_key, bs, embed_dim)`
252
+ value (torch.Tensor): Value embeddings with shape
253
+ `(num_key, bs, embed_dim)`
254
+ query_pos (torch.Tensor): The position embedding for `query`. Default: None.
255
+ key_padding_mask (torch.Tensor): ByteTensor for `query`, with shape `(bs, num_key)`,
256
+ indicating which elements within `key` to be ignored in attention.
257
+ reference_points (torch.Tensor): The normalized reference points
258
+ with shape `(bs, num_query, num_levels, 2)`,
259
+ all elements is range in [0, 1], top-left (0, 0),
260
+ bottom-right (1, 1), including padding are.
261
+ or `(N, Length_{query}, num_levels, 4)`, add additional
262
+ two dimensions `(h, w)` to form reference boxes.
263
+ spatial_shapes (torch.Tensor): Spatial shape of features in different levels.
264
+ With shape `(num_levels, 2)`, last dimension represents `(h, w)`.
265
+ level_start_index (torch.Tensor): The start index of each level. A tensor with
266
+ shape `(num_levels, )` which can be represented as
267
+ `[0, h_0 * w_0, h_0 * w_0 + h_1 * w_1, ...]`.
268
+
269
+ Returns:
270
+ torch.Tensor: forward results with shape `(num_query, bs, embed_dim)`
271
+ """
272
+
273
+ if value is None:
274
+ value = query
275
+
276
+ if query_pos is not None:
277
+ query = query + query_pos
278
+
279
+ if not self.batch_first:
280
+ # change to (bs, num_query ,embed_dims)
281
+ query = query.permute(1, 0, 2)
282
+ value = value.permute(1, 0, 2)
283
+
284
+ bs, num_query, _ = query.shape
285
+ bs, num_value, _ = value.shape
286
+
287
+ assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value
288
+
289
+ value = self.value_proj(value)
290
+ if key_padding_mask is not None:
291
+ value = value.masked_fill(key_padding_mask[..., None], float(0))
292
+ value = value.view(bs, num_value, self.num_heads, -1)
293
+ sampling_offsets = self.sampling_offsets(query).view(
294
+ bs, num_query, self.num_heads, self.num_levels, self.num_points, 2
295
+ )
296
+ attention_weights = self.attention_weights(query).view(
297
+ bs, num_query, self.num_heads, self.num_levels * self.num_points
298
+ )
299
+ attention_weights = attention_weights.softmax(-1)
300
+ attention_weights = attention_weights.view(
301
+ bs,
302
+ num_query,
303
+ self.num_heads,
304
+ self.num_levels,
305
+ self.num_points,
306
+ )
307
+
308
+ # bs, num_query, num_heads, num_levels, num_points, 2
309
+ if reference_points.shape[-1] == 2:
310
+ offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
311
+ sampling_locations = (
312
+ reference_points[:, :, None, :, None, :]
313
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
314
+ )
315
+ elif reference_points.shape[-1] == 4:
316
+ sampling_locations = (
317
+ reference_points[:, :, None, :, None, :2]
318
+ + sampling_offsets
319
+ / self.num_points
320
+ * reference_points[:, :, None, :, None, 2:]
321
+ * 0.5
322
+ )
323
+ else:
324
+ raise ValueError(
325
+ "Last dim of reference_points must be 2 or 4, but get {} instead.".format(
326
+ reference_points.shape[-1]
327
+ )
328
+ )
329
+
330
+ if torch.cuda.is_available() and value.is_cuda:
331
+ halffloat = False
332
+ if value.dtype == torch.float16:
333
+ halffloat = True
334
+ value = value.float()
335
+ sampling_locations = sampling_locations.float()
336
+ attention_weights = attention_weights.float()
337
+
338
+ output = MultiScaleDeformableAttnFunction.apply(
339
+ value,
340
+ spatial_shapes,
341
+ level_start_index,
342
+ sampling_locations,
343
+ attention_weights,
344
+ self.im2col_step,
345
+ )
346
+
347
+ if halffloat:
348
+ output = output.half()
349
+ else:
350
+ output = multi_scale_deformable_attn_pytorch(
351
+ value, spatial_shapes, sampling_locations, attention_weights
352
+ )
353
+
354
+ output = self.output_proj(output)
355
+
356
+ if not self.batch_first:
357
+ output = output.permute(1, 0, 2)
358
+
359
+ return output
360
+
361
+
362
+ def create_dummy_class(klass, dependency, message=""):
363
+ """
364
+ When a dependency of a class is not available, create a dummy class which throws ImportError
365
+ when used.
366
+
367
+ Args:
368
+ klass (str): name of the class.
369
+ dependency (str): name of the dependency.
370
+ message: extra message to print
371
+ Returns:
372
+ class: a class object
373
+ """
374
+ err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, klass)
375
+ if message:
376
+ err = err + " " + message
377
+
378
+ class _DummyMetaClass(type):
379
+ # throw error on class attribute access
380
+ def __getattr__(_, __): # noqa: B902
381
+ raise ImportError(err)
382
+
383
+ class _Dummy(object, metaclass=_DummyMetaClass):
384
+ # throw error on constructor
385
+ def __init__(self, *args, **kwargs):
386
+ raise ImportError(err)
387
+
388
+ return _Dummy
389
+
390
+
391
+ def create_dummy_func(func, dependency, message=""):
392
+ """
393
+ When a dependency of a function is not available, create a dummy function which throws
394
+ ImportError when used.
395
+
396
+ Args:
397
+ func (str): name of the function.
398
+ dependency (str or list[str]): name(s) of the dependency.
399
+ message: extra message to print
400
+ Returns:
401
+ function: a function object
402
+ """
403
+ err = "Cannot import '{}', therefore '{}' is not available.".format(dependency, func)
404
+ if message:
405
+ err = err + " " + message
406
+
407
+ if isinstance(dependency, (list, tuple)):
408
+ dependency = ",".join(dependency)
409
+
410
+ def _dummy(*args, **kwargs):
411
+ raise ImportError(err)
412
+
413
+ return _dummy
groundingdino/models/GroundingDINO/transformer.py ADDED
@@ -0,0 +1,959 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # DINO
8
+ # Copyright (c) 2022 IDEA. All Rights Reserved.
9
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
10
+ # ------------------------------------------------------------------------
11
+ # Conditional DETR Transformer class.
12
+ # Copyright (c) 2021 Microsoft. All Rights Reserved.
13
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
14
+ # ------------------------------------------------------------------------
15
+ # Modified from DETR (https://github.com/facebookresearch/detr)
16
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
17
+ # ------------------------------------------------------------------------
18
+
19
+ from typing import Optional
20
+
21
+ import torch
22
+ import torch.utils.checkpoint as checkpoint
23
+ from torch import Tensor, nn
24
+
25
+ from groundingdino.util.misc import inverse_sigmoid
26
+
27
+ from .fuse_modules import BiAttentionBlock
28
+ from .ms_deform_attn import MultiScaleDeformableAttention as MSDeformAttn
29
+ from .transformer_vanilla import TransformerEncoderLayer
30
+ from .utils import (
31
+ MLP,
32
+ _get_activation_fn,
33
+ _get_clones,
34
+ gen_encoder_output_proposals,
35
+ gen_sineembed_for_position,
36
+ get_sine_pos_embed,
37
+ )
38
+
39
+
40
+ class Transformer(nn.Module):
41
+ def __init__(
42
+ self,
43
+ d_model=256,
44
+ nhead=8,
45
+ num_queries=300,
46
+ num_encoder_layers=6,
47
+ num_unicoder_layers=0,
48
+ num_decoder_layers=6,
49
+ dim_feedforward=2048,
50
+ dropout=0.0,
51
+ activation="relu",
52
+ normalize_before=False,
53
+ return_intermediate_dec=False,
54
+ query_dim=4,
55
+ num_patterns=0,
56
+ # for deformable encoder
57
+ num_feature_levels=1,
58
+ enc_n_points=4,
59
+ dec_n_points=4,
60
+ # init query
61
+ learnable_tgt_init=False,
62
+ # two stage
63
+ two_stage_type="no", # ['no', 'standard', 'early', 'combine', 'enceachlayer', 'enclayer1']
64
+ embed_init_tgt=False,
65
+ # for text
66
+ use_text_enhancer=False,
67
+ use_fusion_layer=False,
68
+ use_checkpoint=False,
69
+ use_transformer_ckpt=False,
70
+ use_text_cross_attention=False,
71
+ text_dropout=0.1,
72
+ fusion_dropout=0.1,
73
+ fusion_droppath=0.0,
74
+ ):
75
+ super().__init__()
76
+ self.num_feature_levels = num_feature_levels
77
+ self.num_encoder_layers = num_encoder_layers
78
+ self.num_unicoder_layers = num_unicoder_layers
79
+ self.num_decoder_layers = num_decoder_layers
80
+ self.num_queries = num_queries
81
+ assert query_dim == 4
82
+
83
+ # choose encoder layer type
84
+ encoder_layer = DeformableTransformerEncoderLayer(
85
+ d_model, dim_feedforward, dropout, activation, num_feature_levels, nhead, enc_n_points
86
+ )
87
+
88
+ if use_text_enhancer:
89
+ text_enhance_layer = TransformerEncoderLayer(
90
+ d_model=d_model,
91
+ nhead=nhead // 2,
92
+ dim_feedforward=dim_feedforward // 2,
93
+ dropout=text_dropout,
94
+ )
95
+ else:
96
+ text_enhance_layer = None
97
+
98
+ if use_fusion_layer:
99
+ feature_fusion_layer = BiAttentionBlock(
100
+ v_dim=d_model,
101
+ l_dim=d_model,
102
+ embed_dim=dim_feedforward // 2,
103
+ num_heads=nhead // 2,
104
+ dropout=fusion_dropout,
105
+ drop_path=fusion_droppath,
106
+ )
107
+ else:
108
+ feature_fusion_layer = None
109
+
110
+ encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
111
+ assert encoder_norm is None
112
+ self.encoder = TransformerEncoder(
113
+ encoder_layer,
114
+ num_encoder_layers,
115
+ d_model=d_model,
116
+ num_queries=num_queries,
117
+ text_enhance_layer=text_enhance_layer,
118
+ feature_fusion_layer=feature_fusion_layer,
119
+ use_checkpoint=use_checkpoint,
120
+ use_transformer_ckpt=use_transformer_ckpt,
121
+ )
122
+
123
+ # choose decoder layer type
124
+ decoder_layer = DeformableTransformerDecoderLayer(
125
+ d_model,
126
+ dim_feedforward,
127
+ dropout,
128
+ activation,
129
+ num_feature_levels,
130
+ nhead,
131
+ dec_n_points,
132
+ use_text_cross_attention=use_text_cross_attention,
133
+ )
134
+
135
+ decoder_norm = nn.LayerNorm(d_model)
136
+ self.decoder = TransformerDecoder(
137
+ decoder_layer,
138
+ num_decoder_layers,
139
+ decoder_norm,
140
+ return_intermediate=return_intermediate_dec,
141
+ d_model=d_model,
142
+ query_dim=query_dim,
143
+ num_feature_levels=num_feature_levels,
144
+ )
145
+
146
+ self.d_model = d_model
147
+ self.nhead = nhead
148
+ self.dec_layers = num_decoder_layers
149
+ self.num_queries = num_queries # useful for single stage model only
150
+ self.num_patterns = num_patterns
151
+ if not isinstance(num_patterns, int):
152
+ Warning("num_patterns should be int but {}".format(type(num_patterns)))
153
+ self.num_patterns = 0
154
+
155
+ if num_feature_levels > 1:
156
+ if self.num_encoder_layers > 0:
157
+ self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
158
+ else:
159
+ self.level_embed = None
160
+
161
+ self.learnable_tgt_init = learnable_tgt_init
162
+ assert learnable_tgt_init, "why not learnable_tgt_init"
163
+ self.embed_init_tgt = embed_init_tgt
164
+ if (two_stage_type != "no" and embed_init_tgt) or (two_stage_type == "no"):
165
+ self.tgt_embed = nn.Embedding(self.num_queries, d_model)
166
+ nn.init.normal_(self.tgt_embed.weight.data)
167
+ else:
168
+ self.tgt_embed = None
169
+
170
+ # for two stage
171
+ self.two_stage_type = two_stage_type
172
+ assert two_stage_type in ["no", "standard"], "unknown param {} of two_stage_type".format(
173
+ two_stage_type
174
+ )
175
+ if two_stage_type == "standard":
176
+ # anchor selection at the output of encoder
177
+ self.enc_output = nn.Linear(d_model, d_model)
178
+ self.enc_output_norm = nn.LayerNorm(d_model)
179
+ self.two_stage_wh_embedding = None
180
+
181
+ if two_stage_type == "no":
182
+ self.init_ref_points(num_queries) # init self.refpoint_embed
183
+
184
+ self.enc_out_class_embed = None
185
+ self.enc_out_bbox_embed = None
186
+
187
+ self._reset_parameters()
188
+
189
+ def _reset_parameters(self):
190
+ for p in self.parameters():
191
+ if p.dim() > 1:
192
+ nn.init.xavier_uniform_(p)
193
+ for m in self.modules():
194
+ if isinstance(m, MSDeformAttn):
195
+ m._reset_parameters()
196
+ if self.num_feature_levels > 1 and self.level_embed is not None:
197
+ nn.init.normal_(self.level_embed)
198
+
199
+ def get_valid_ratio(self, mask):
200
+ _, H, W = mask.shape
201
+ valid_H = torch.sum(~mask[:, :, 0], 1)
202
+ valid_W = torch.sum(~mask[:, 0, :], 1)
203
+ valid_ratio_h = valid_H.float() / H
204
+ valid_ratio_w = valid_W.float() / W
205
+ valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
206
+ return valid_ratio
207
+
208
+ def init_ref_points(self, use_num_queries):
209
+ self.refpoint_embed = nn.Embedding(use_num_queries, 4)
210
+
211
+ def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, text_dict=None):
212
+ """
213
+ Input:
214
+ - srcs: List of multi features [bs, ci, hi, wi]
215
+ - masks: List of multi masks [bs, hi, wi]
216
+ - refpoint_embed: [bs, num_dn, 4]. None in infer
217
+ - pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
218
+ - tgt: [bs, num_dn, d_model]. None in infer
219
+
220
+ """
221
+ # prepare input for encoder
222
+ src_flatten = []
223
+ mask_flatten = []
224
+ lvl_pos_embed_flatten = []
225
+ spatial_shapes = []
226
+ for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
227
+ bs, c, h, w = src.shape
228
+ spatial_shape = (h, w)
229
+ spatial_shapes.append(spatial_shape)
230
+
231
+ src = src.flatten(2).transpose(1, 2) # bs, hw, c
232
+ mask = mask.flatten(1) # bs, hw
233
+ pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
234
+ if self.num_feature_levels > 1 and self.level_embed is not None:
235
+ lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
236
+ else:
237
+ lvl_pos_embed = pos_embed
238
+ lvl_pos_embed_flatten.append(lvl_pos_embed)
239
+ src_flatten.append(src)
240
+ mask_flatten.append(mask)
241
+ src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
242
+ mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
243
+ lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
244
+ spatial_shapes = torch.as_tensor(
245
+ spatial_shapes, dtype=torch.long, device=src_flatten.device
246
+ )
247
+ level_start_index = torch.cat(
248
+ (spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1])
249
+ )
250
+ valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
251
+
252
+ # two stage
253
+ enc_topk_proposals = enc_refpoint_embed = None
254
+
255
+ #########################################################
256
+ # Begin Encoder
257
+ #########################################################
258
+ memory, memory_text = self.encoder(
259
+ src_flatten,
260
+ pos=lvl_pos_embed_flatten,
261
+ level_start_index=level_start_index,
262
+ spatial_shapes=spatial_shapes,
263
+ valid_ratios=valid_ratios,
264
+ key_padding_mask=mask_flatten,
265
+ memory_text=text_dict["encoded_text"],
266
+ text_attention_mask=~text_dict["text_token_mask"],
267
+ # we ~ the mask . False means use the token; True means pad the token
268
+ position_ids=text_dict["position_ids"],
269
+ text_self_attention_masks=text_dict["text_self_attention_masks"],
270
+ )
271
+ #########################################################
272
+ # End Encoder
273
+ # - memory: bs, \sum{hw}, c
274
+ # - mask_flatten: bs, \sum{hw}
275
+ # - lvl_pos_embed_flatten: bs, \sum{hw}, c
276
+ # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
277
+ # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
278
+ #########################################################
279
+ text_dict["encoded_text"] = memory_text
280
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
281
+ # if memory.isnan().any() | memory.isinf().any():
282
+ # import ipdb; ipdb.set_trace()
283
+
284
+ if self.two_stage_type == "standard":
285
+ output_memory, output_proposals = gen_encoder_output_proposals(
286
+ memory, mask_flatten, spatial_shapes
287
+ )
288
+ output_memory = self.enc_output_norm(self.enc_output(output_memory))
289
+
290
+ if text_dict is not None:
291
+ enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
292
+ else:
293
+ enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
294
+
295
+ topk_logits = enc_outputs_class_unselected.max(-1)[0]
296
+ enc_outputs_coord_unselected = (
297
+ self.enc_out_bbox_embed(output_memory) + output_proposals
298
+ ) # (bs, \sum{hw}, 4) unsigmoid
299
+ topk = self.num_queries
300
+
301
+ topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
302
+
303
+ # gather boxes
304
+ refpoint_embed_undetach = torch.gather(
305
+ enc_outputs_coord_unselected, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
306
+ ) # unsigmoid
307
+ refpoint_embed_ = refpoint_embed_undetach.detach()
308
+ init_box_proposal = torch.gather(
309
+ output_proposals, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4)
310
+ ).sigmoid() # sigmoid
311
+
312
+ # gather tgt
313
+ tgt_undetach = torch.gather(
314
+ output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model)
315
+ )
316
+ if self.embed_init_tgt:
317
+ tgt_ = (
318
+ self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
319
+ ) # nq, bs, d_model
320
+ else:
321
+ tgt_ = tgt_undetach.detach()
322
+
323
+ if refpoint_embed is not None:
324
+ refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
325
+ tgt = torch.cat([tgt, tgt_], dim=1)
326
+ else:
327
+ refpoint_embed, tgt = refpoint_embed_, tgt_
328
+
329
+ elif self.two_stage_type == "no":
330
+ tgt_ = (
331
+ self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
332
+ ) # nq, bs, d_model
333
+ refpoint_embed_ = (
334
+ self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1)
335
+ ) # nq, bs, 4
336
+
337
+ if refpoint_embed is not None:
338
+ refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
339
+ tgt = torch.cat([tgt, tgt_], dim=1)
340
+ else:
341
+ refpoint_embed, tgt = refpoint_embed_, tgt_
342
+
343
+ if self.num_patterns > 0:
344
+ tgt_embed = tgt.repeat(1, self.num_patterns, 1)
345
+ refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
346
+ tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(
347
+ self.num_queries, 1
348
+ ) # 1, n_q*n_pat, d_model
349
+ tgt = tgt_embed + tgt_pat
350
+
351
+ init_box_proposal = refpoint_embed_.sigmoid()
352
+
353
+ else:
354
+ raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
355
+ #########################################################
356
+ # End preparing tgt
357
+ # - tgt: bs, NQ, d_model
358
+ # - refpoint_embed(unsigmoid): bs, NQ, d_model
359
+ #########################################################
360
+
361
+ #########################################################
362
+ # Begin Decoder
363
+ #########################################################
364
+ hs, references = self.decoder(
365
+ tgt=tgt.transpose(0, 1),
366
+ memory=memory.transpose(0, 1),
367
+ memory_key_padding_mask=mask_flatten,
368
+ pos=lvl_pos_embed_flatten.transpose(0, 1),
369
+ refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
370
+ level_start_index=level_start_index,
371
+ spatial_shapes=spatial_shapes,
372
+ valid_ratios=valid_ratios,
373
+ tgt_mask=attn_mask,
374
+ memory_text=text_dict["encoded_text"],
375
+ text_attention_mask=~text_dict["text_token_mask"],
376
+ # we ~ the mask . False means use the token; True means pad the token
377
+ )
378
+ #########################################################
379
+ # End Decoder
380
+ # hs: n_dec, bs, nq, d_model
381
+ # references: n_dec+1, bs, nq, query_dim
382
+ #########################################################
383
+
384
+ #########################################################
385
+ # Begin postprocess
386
+ #########################################################
387
+ if self.two_stage_type == "standard":
388
+ hs_enc = tgt_undetach.unsqueeze(0)
389
+ ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
390
+ else:
391
+ hs_enc = ref_enc = None
392
+ #########################################################
393
+ # End postprocess
394
+ # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
395
+ # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
396
+ #########################################################
397
+
398
+ return hs, references, hs_enc, ref_enc, init_box_proposal
399
+ # hs: (n_dec, bs, nq, d_model)
400
+ # references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
401
+ # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
402
+ # ref_enc: sigmoid coordinates. \
403
+ # (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
404
+
405
+
406
+ class TransformerEncoder(nn.Module):
407
+ def __init__(
408
+ self,
409
+ encoder_layer,
410
+ num_layers,
411
+ d_model=256,
412
+ num_queries=300,
413
+ enc_layer_share=False,
414
+ text_enhance_layer=None,
415
+ feature_fusion_layer=None,
416
+ use_checkpoint=False,
417
+ use_transformer_ckpt=False,
418
+ ):
419
+ """_summary_
420
+
421
+ Args:
422
+ encoder_layer (_type_): _description_
423
+ num_layers (_type_): _description_
424
+ norm (_type_, optional): _description_. Defaults to None.
425
+ d_model (int, optional): _description_. Defaults to 256.
426
+ num_queries (int, optional): _description_. Defaults to 300.
427
+ enc_layer_share (bool, optional): _description_. Defaults to False.
428
+
429
+ """
430
+ super().__init__()
431
+ # prepare layers
432
+ self.layers = []
433
+ self.text_layers = []
434
+ self.fusion_layers = []
435
+ if num_layers > 0:
436
+ self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
437
+
438
+ if text_enhance_layer is not None:
439
+ self.text_layers = _get_clones(
440
+ text_enhance_layer, num_layers, layer_share=enc_layer_share
441
+ )
442
+ if feature_fusion_layer is not None:
443
+ self.fusion_layers = _get_clones(
444
+ feature_fusion_layer, num_layers, layer_share=enc_layer_share
445
+ )
446
+ else:
447
+ self.layers = []
448
+ del encoder_layer
449
+
450
+ if text_enhance_layer is not None:
451
+ self.text_layers = []
452
+ del text_enhance_layer
453
+ if feature_fusion_layer is not None:
454
+ self.fusion_layers = []
455
+ del feature_fusion_layer
456
+
457
+ self.query_scale = None
458
+ self.num_queries = num_queries
459
+ self.num_layers = num_layers
460
+ self.d_model = d_model
461
+
462
+ self.use_checkpoint = use_checkpoint
463
+ self.use_transformer_ckpt = use_transformer_ckpt
464
+
465
+ @staticmethod
466
+ def get_reference_points(spatial_shapes, valid_ratios, device):
467
+ reference_points_list = []
468
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
469
+
470
+ ref_y, ref_x = torch.meshgrid(
471
+ torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
472
+ torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),
473
+ )
474
+ ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
475
+ ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
476
+ ref = torch.stack((ref_x, ref_y), -1)
477
+ reference_points_list.append(ref)
478
+ reference_points = torch.cat(reference_points_list, 1)
479
+ reference_points = reference_points[:, :, None] * valid_ratios[:, None]
480
+ return reference_points
481
+
482
+ def forward(
483
+ self,
484
+ # for images
485
+ src: Tensor,
486
+ pos: Tensor,
487
+ spatial_shapes: Tensor,
488
+ level_start_index: Tensor,
489
+ valid_ratios: Tensor,
490
+ key_padding_mask: Tensor,
491
+ # for texts
492
+ memory_text: Tensor = None,
493
+ text_attention_mask: Tensor = None,
494
+ pos_text: Tensor = None,
495
+ text_self_attention_masks: Tensor = None,
496
+ position_ids: Tensor = None,
497
+ ):
498
+ """
499
+ Input:
500
+ - src: [bs, sum(hi*wi), 256]
501
+ - pos: pos embed for src. [bs, sum(hi*wi), 256]
502
+ - spatial_shapes: h,w of each level [num_level, 2]
503
+ - level_start_index: [num_level] start point of level in sum(hi*wi).
504
+ - valid_ratios: [bs, num_level, 2]
505
+ - key_padding_mask: [bs, sum(hi*wi)]
506
+
507
+ - memory_text: bs, n_text, 256
508
+ - text_attention_mask: bs, n_text
509
+ False for no padding; True for padding
510
+ - pos_text: bs, n_text, 256
511
+
512
+ - position_ids: bs, n_text
513
+ Intermedia:
514
+ - reference_points: [bs, sum(hi*wi), num_level, 2]
515
+ Outpus:
516
+ - output: [bs, sum(hi*wi), 256]
517
+ """
518
+
519
+ output = src
520
+
521
+ # preparation and reshape
522
+ if self.num_layers > 0:
523
+ reference_points = self.get_reference_points(
524
+ spatial_shapes, valid_ratios, device=src.device
525
+ )
526
+
527
+ if self.text_layers:
528
+ # generate pos_text
529
+ bs, n_text, text_dim = memory_text.shape
530
+ if pos_text is None and position_ids is None:
531
+ pos_text = (
532
+ torch.arange(n_text, device=memory_text.device)
533
+ .float()
534
+ .unsqueeze(0)
535
+ .unsqueeze(-1)
536
+ .repeat(bs, 1, 1)
537
+ )
538
+ pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
539
+ if position_ids is not None:
540
+ pos_text = get_sine_pos_embed(
541
+ position_ids[..., None], num_pos_feats=256, exchange_xy=False
542
+ )
543
+
544
+ # main process
545
+ for layer_id, layer in enumerate(self.layers):
546
+ # if output.isnan().any() or memory_text.isnan().any():
547
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
548
+ # import ipdb; ipdb.set_trace()
549
+ if self.fusion_layers:
550
+ if self.use_checkpoint:
551
+ output, memory_text = checkpoint.checkpoint(
552
+ self.fusion_layers[layer_id],
553
+ output,
554
+ memory_text,
555
+ key_padding_mask,
556
+ text_attention_mask,
557
+ )
558
+ else:
559
+ output, memory_text = self.fusion_layers[layer_id](
560
+ v=output,
561
+ l=memory_text,
562
+ attention_mask_v=key_padding_mask,
563
+ attention_mask_l=text_attention_mask,
564
+ )
565
+
566
+ if self.text_layers:
567
+ memory_text = self.text_layers[layer_id](
568
+ src=memory_text.transpose(0, 1),
569
+ src_mask=~text_self_attention_masks, # note we use ~ for mask here
570
+ src_key_padding_mask=text_attention_mask,
571
+ pos=(pos_text.transpose(0, 1) if pos_text is not None else None),
572
+ ).transpose(0, 1)
573
+
574
+ # main process
575
+ if self.use_transformer_ckpt:
576
+ output = checkpoint.checkpoint(
577
+ layer,
578
+ output,
579
+ pos,
580
+ reference_points,
581
+ spatial_shapes,
582
+ level_start_index,
583
+ key_padding_mask,
584
+ )
585
+ else:
586
+ output = layer(
587
+ src=output,
588
+ pos=pos,
589
+ reference_points=reference_points,
590
+ spatial_shapes=spatial_shapes,
591
+ level_start_index=level_start_index,
592
+ key_padding_mask=key_padding_mask,
593
+ )
594
+
595
+ return output, memory_text
596
+
597
+
598
+ class TransformerDecoder(nn.Module):
599
+ def __init__(
600
+ self,
601
+ decoder_layer,
602
+ num_layers,
603
+ norm=None,
604
+ return_intermediate=False,
605
+ d_model=256,
606
+ query_dim=4,
607
+ num_feature_levels=1,
608
+ ):
609
+ super().__init__()
610
+ if num_layers > 0:
611
+ self.layers = _get_clones(decoder_layer, num_layers)
612
+ else:
613
+ self.layers = []
614
+ self.num_layers = num_layers
615
+ self.norm = norm
616
+ self.return_intermediate = return_intermediate
617
+ assert return_intermediate, "support return_intermediate only"
618
+ self.query_dim = query_dim
619
+ assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
620
+ self.num_feature_levels = num_feature_levels
621
+
622
+ self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
623
+ self.query_pos_sine_scale = None
624
+
625
+ self.query_scale = None
626
+ self.bbox_embed = None
627
+ self.class_embed = None
628
+
629
+ self.d_model = d_model
630
+
631
+ self.ref_anchor_head = None
632
+
633
+ def forward(
634
+ self,
635
+ tgt,
636
+ memory,
637
+ tgt_mask: Optional[Tensor] = None,
638
+ memory_mask: Optional[Tensor] = None,
639
+ tgt_key_padding_mask: Optional[Tensor] = None,
640
+ memory_key_padding_mask: Optional[Tensor] = None,
641
+ pos: Optional[Tensor] = None,
642
+ refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
643
+ # for memory
644
+ level_start_index: Optional[Tensor] = None, # num_levels
645
+ spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
646
+ valid_ratios: Optional[Tensor] = None,
647
+ # for text
648
+ memory_text: Optional[Tensor] = None,
649
+ text_attention_mask: Optional[Tensor] = None,
650
+ ):
651
+ """
652
+ Input:
653
+ - tgt: nq, bs, d_model
654
+ - memory: hw, bs, d_model
655
+ - pos: hw, bs, d_model
656
+ - refpoints_unsigmoid: nq, bs, 2/4
657
+ - valid_ratios/spatial_shapes: bs, nlevel, 2
658
+ """
659
+ output = tgt
660
+
661
+ intermediate = []
662
+ reference_points = refpoints_unsigmoid.sigmoid()
663
+ ref_points = [reference_points]
664
+
665
+ for layer_id, layer in enumerate(self.layers):
666
+
667
+ if reference_points.shape[-1] == 4:
668
+ reference_points_input = (
669
+ reference_points[:, :, None]
670
+ * torch.cat([valid_ratios, valid_ratios], -1)[None, :]
671
+ ) # nq, bs, nlevel, 4
672
+ else:
673
+ assert reference_points.shape[-1] == 2
674
+ reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
675
+ query_sine_embed = gen_sineembed_for_position(
676
+ reference_points_input[:, :, 0, :]
677
+ ) # nq, bs, 256*2
678
+
679
+ # conditional query
680
+ raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
681
+ pos_scale = self.query_scale(output) if self.query_scale is not None else 1
682
+ query_pos = pos_scale * raw_query_pos
683
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
684
+ # if query_pos.isnan().any() | query_pos.isinf().any():
685
+ # import ipdb; ipdb.set_trace()
686
+
687
+ # main process
688
+ output = layer(
689
+ tgt=output,
690
+ tgt_query_pos=query_pos,
691
+ tgt_query_sine_embed=query_sine_embed,
692
+ tgt_key_padding_mask=tgt_key_padding_mask,
693
+ tgt_reference_points=reference_points_input,
694
+ memory_text=memory_text,
695
+ text_attention_mask=text_attention_mask,
696
+ memory=memory,
697
+ memory_key_padding_mask=memory_key_padding_mask,
698
+ memory_level_start_index=level_start_index,
699
+ memory_spatial_shapes=spatial_shapes,
700
+ memory_pos=pos,
701
+ self_attn_mask=tgt_mask,
702
+ cross_attn_mask=memory_mask,
703
+ )
704
+ if output.isnan().any() | output.isinf().any():
705
+ print(f"output layer_id {layer_id} is nan")
706
+ try:
707
+ num_nan = output.isnan().sum().item()
708
+ num_inf = output.isinf().sum().item()
709
+ print(f"num_nan {num_nan}, num_inf {num_inf}")
710
+ except Exception as e:
711
+ print(e)
712
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
713
+ # import ipdb; ipdb.set_trace()
714
+
715
+ # iter update
716
+ if self.bbox_embed is not None:
717
+ # box_holder = self.bbox_embed(output)
718
+ # box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
719
+ # new_reference_points = box_holder[..., :self.query_dim].sigmoid()
720
+
721
+ reference_before_sigmoid = inverse_sigmoid(reference_points)
722
+ delta_unsig = self.bbox_embed[layer_id](output)
723
+ outputs_unsig = delta_unsig + reference_before_sigmoid
724
+ new_reference_points = outputs_unsig.sigmoid()
725
+
726
+ reference_points = new_reference_points.detach()
727
+ # if layer_id != self.num_layers - 1:
728
+ ref_points.append(new_reference_points)
729
+
730
+ intermediate.append(self.norm(output))
731
+
732
+ return [
733
+ [itm_out.transpose(0, 1) for itm_out in intermediate],
734
+ [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points],
735
+ ]
736
+
737
+
738
+ class DeformableTransformerEncoderLayer(nn.Module):
739
+ def __init__(
740
+ self,
741
+ d_model=256,
742
+ d_ffn=1024,
743
+ dropout=0.1,
744
+ activation="relu",
745
+ n_levels=4,
746
+ n_heads=8,
747
+ n_points=4,
748
+ ):
749
+ super().__init__()
750
+
751
+ # self attention
752
+ self.self_attn = MSDeformAttn(
753
+ embed_dim=d_model,
754
+ num_levels=n_levels,
755
+ num_heads=n_heads,
756
+ num_points=n_points,
757
+ batch_first=True,
758
+ )
759
+ self.dropout1 = nn.Dropout(dropout)
760
+ self.norm1 = nn.LayerNorm(d_model)
761
+
762
+ # ffn
763
+ self.linear1 = nn.Linear(d_model, d_ffn)
764
+ self.activation = _get_activation_fn(activation, d_model=d_ffn)
765
+ self.dropout2 = nn.Dropout(dropout)
766
+ self.linear2 = nn.Linear(d_ffn, d_model)
767
+ self.dropout3 = nn.Dropout(dropout)
768
+ self.norm2 = nn.LayerNorm(d_model)
769
+
770
+ @staticmethod
771
+ def with_pos_embed(tensor, pos):
772
+ return tensor if pos is None else tensor + pos
773
+
774
+ def forward_ffn(self, src):
775
+ src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
776
+ src = src + self.dropout3(src2)
777
+ src = self.norm2(src)
778
+ return src
779
+
780
+ def forward(
781
+ self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None
782
+ ):
783
+ # self attention
784
+ # import ipdb; ipdb.set_trace()
785
+ src2 = self.self_attn(
786
+ query=self.with_pos_embed(src, pos),
787
+ reference_points=reference_points,
788
+ value=src,
789
+ spatial_shapes=spatial_shapes,
790
+ level_start_index=level_start_index,
791
+ key_padding_mask=key_padding_mask,
792
+ )
793
+ src = src + self.dropout1(src2)
794
+ src = self.norm1(src)
795
+
796
+ # ffn
797
+ src = self.forward_ffn(src)
798
+
799
+ return src
800
+
801
+
802
+ class DeformableTransformerDecoderLayer(nn.Module):
803
+ def __init__(
804
+ self,
805
+ d_model=256,
806
+ d_ffn=1024,
807
+ dropout=0.1,
808
+ activation="relu",
809
+ n_levels=4,
810
+ n_heads=8,
811
+ n_points=4,
812
+ use_text_feat_guide=False,
813
+ use_text_cross_attention=False,
814
+ ):
815
+ super().__init__()
816
+
817
+ # cross attention
818
+ self.cross_attn = MSDeformAttn(
819
+ embed_dim=d_model,
820
+ num_levels=n_levels,
821
+ num_heads=n_heads,
822
+ num_points=n_points,
823
+ batch_first=True,
824
+ )
825
+ self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
826
+ self.norm1 = nn.LayerNorm(d_model)
827
+
828
+ # cross attention text
829
+ if use_text_cross_attention:
830
+ self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
831
+ self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
832
+ self.catext_norm = nn.LayerNorm(d_model)
833
+
834
+ # self attention
835
+ self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
836
+ self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
837
+ self.norm2 = nn.LayerNorm(d_model)
838
+
839
+ # ffn
840
+ self.linear1 = nn.Linear(d_model, d_ffn)
841
+ self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
842
+ self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
843
+ self.linear2 = nn.Linear(d_ffn, d_model)
844
+ self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
845
+ self.norm3 = nn.LayerNorm(d_model)
846
+
847
+ self.key_aware_proj = None
848
+ self.use_text_feat_guide = use_text_feat_guide
849
+ assert not use_text_feat_guide
850
+ self.use_text_cross_attention = use_text_cross_attention
851
+
852
+ def rm_self_attn_modules(self):
853
+ self.self_attn = None
854
+ self.dropout2 = None
855
+ self.norm2 = None
856
+
857
+ @staticmethod
858
+ def with_pos_embed(tensor, pos):
859
+ return tensor if pos is None else tensor + pos
860
+
861
+ def forward_ffn(self, tgt):
862
+ with torch.cuda.amp.autocast(enabled=False):
863
+ tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
864
+ tgt = tgt + self.dropout4(tgt2)
865
+ tgt = self.norm3(tgt)
866
+ return tgt
867
+
868
+ def forward(
869
+ self,
870
+ # for tgt
871
+ tgt: Optional[Tensor], # nq, bs, d_model
872
+ tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
873
+ tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
874
+ tgt_key_padding_mask: Optional[Tensor] = None,
875
+ tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
876
+ memory_text: Optional[Tensor] = None, # bs, num_token, d_model
877
+ text_attention_mask: Optional[Tensor] = None, # bs, num_token
878
+ # for memory
879
+ memory: Optional[Tensor] = None, # hw, bs, d_model
880
+ memory_key_padding_mask: Optional[Tensor] = None,
881
+ memory_level_start_index: Optional[Tensor] = None, # num_levels
882
+ memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
883
+ memory_pos: Optional[Tensor] = None, # pos for memory
884
+ # sa
885
+ self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
886
+ cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
887
+ ):
888
+ """
889
+ Input:
890
+ - tgt/tgt_query_pos: nq, bs, d_model
891
+ -
892
+ """
893
+ assert cross_attn_mask is None
894
+
895
+ # self attention
896
+ if self.self_attn is not None:
897
+ # import ipdb; ipdb.set_trace()
898
+ q = k = self.with_pos_embed(tgt, tgt_query_pos)
899
+ tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
900
+ tgt = tgt + self.dropout2(tgt2)
901
+ tgt = self.norm2(tgt)
902
+
903
+ if self.use_text_cross_attention:
904
+ tgt2 = self.ca_text(
905
+ self.with_pos_embed(tgt, tgt_query_pos),
906
+ memory_text.transpose(0, 1),
907
+ memory_text.transpose(0, 1),
908
+ key_padding_mask=text_attention_mask,
909
+ )[0]
910
+ tgt = tgt + self.catext_dropout(tgt2)
911
+ tgt = self.catext_norm(tgt)
912
+
913
+ tgt2 = self.cross_attn(
914
+ query=self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
915
+ reference_points=tgt_reference_points.transpose(0, 1).contiguous(),
916
+ value=memory.transpose(0, 1),
917
+ spatial_shapes=memory_spatial_shapes,
918
+ level_start_index=memory_level_start_index,
919
+ key_padding_mask=memory_key_padding_mask,
920
+ ).transpose(0, 1)
921
+ tgt = tgt + self.dropout1(tgt2)
922
+ tgt = self.norm1(tgt)
923
+
924
+ # ffn
925
+ tgt = self.forward_ffn(tgt)
926
+
927
+ return tgt
928
+
929
+
930
+ def build_transformer(args):
931
+ return Transformer(
932
+ d_model=args.hidden_dim,
933
+ dropout=args.dropout,
934
+ nhead=args.nheads,
935
+ num_queries=args.num_queries,
936
+ dim_feedforward=args.dim_feedforward,
937
+ num_encoder_layers=args.enc_layers,
938
+ num_decoder_layers=args.dec_layers,
939
+ normalize_before=args.pre_norm,
940
+ return_intermediate_dec=True,
941
+ query_dim=args.query_dim,
942
+ activation=args.transformer_activation,
943
+ num_patterns=args.num_patterns,
944
+ num_feature_levels=args.num_feature_levels,
945
+ enc_n_points=args.enc_n_points,
946
+ dec_n_points=args.dec_n_points,
947
+ learnable_tgt_init=True,
948
+ # two stage
949
+ two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
950
+ embed_init_tgt=args.embed_init_tgt,
951
+ use_text_enhancer=args.use_text_enhancer,
952
+ use_fusion_layer=args.use_fusion_layer,
953
+ use_checkpoint=args.use_checkpoint,
954
+ use_transformer_ckpt=args.use_transformer_ckpt,
955
+ use_text_cross_attention=args.use_text_cross_attention,
956
+ text_dropout=args.text_dropout,
957
+ fusion_dropout=args.fusion_dropout,
958
+ fusion_droppath=args.fusion_droppath,
959
+ )
groundingdino/models/GroundingDINO/transformer_vanilla.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
8
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
9
+ """
10
+ DETR Transformer class.
11
+
12
+ Copy-paste from torch.nn.Transformer with modifications:
13
+ * positional encodings are passed in MHattention
14
+ * extra LN at the end of encoder is removed
15
+ * decoder returns a stack of activations from all decoding layers
16
+ """
17
+ from typing import Optional
18
+
19
+ import torch
20
+ import torch.nn.functional as F
21
+ from torch import Tensor, nn
22
+
23
+ from .utils import (
24
+ MLP,
25
+ _get_activation_fn,
26
+ _get_clones,
27
+ gen_encoder_output_proposals,
28
+ gen_sineembed_for_position,
29
+ sigmoid_focal_loss,
30
+ )
31
+
32
+
33
+ class TextTransformer(nn.Module):
34
+ def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
35
+ super().__init__()
36
+ self.num_layers = num_layers
37
+ self.d_model = d_model
38
+ self.nheads = nheads
39
+ self.dim_feedforward = dim_feedforward
40
+ self.norm = None
41
+
42
+ single_encoder_layer = TransformerEncoderLayer(
43
+ d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout
44
+ )
45
+ self.layers = _get_clones(single_encoder_layer, num_layers)
46
+
47
+ def forward(self, memory_text: torch.Tensor, text_attention_mask: torch.Tensor):
48
+ """
49
+
50
+ Args:
51
+ text_attention_mask: bs, num_token
52
+ memory_text: bs, num_token, d_model
53
+
54
+ Raises:
55
+ RuntimeError: _description_
56
+
57
+ Returns:
58
+ output: bs, num_token, d_model
59
+ """
60
+
61
+ output = memory_text.transpose(0, 1)
62
+
63
+ for layer in self.layers:
64
+ output = layer(output, src_key_padding_mask=text_attention_mask)
65
+
66
+ if self.norm is not None:
67
+ output = self.norm(output)
68
+
69
+ return output.transpose(0, 1)
70
+
71
+
72
+ class TransformerEncoderLayer(nn.Module):
73
+ def __init__(
74
+ self,
75
+ d_model,
76
+ nhead,
77
+ dim_feedforward=2048,
78
+ dropout=0.1,
79
+ activation="relu",
80
+ normalize_before=False,
81
+ ):
82
+ super().__init__()
83
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
84
+ # Implementation of Feedforward model
85
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
86
+ self.dropout = nn.Dropout(dropout)
87
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
88
+
89
+ self.norm1 = nn.LayerNorm(d_model)
90
+ self.norm2 = nn.LayerNorm(d_model)
91
+ self.dropout1 = nn.Dropout(dropout)
92
+ self.dropout2 = nn.Dropout(dropout)
93
+
94
+ self.activation = _get_activation_fn(activation)
95
+ self.normalize_before = normalize_before
96
+ self.nhead = nhead
97
+
98
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
99
+ return tensor if pos is None else tensor + pos
100
+
101
+ def forward(
102
+ self,
103
+ src,
104
+ src_mask: Optional[Tensor] = None,
105
+ src_key_padding_mask: Optional[Tensor] = None,
106
+ pos: Optional[Tensor] = None,
107
+ ):
108
+ # repeat attn mask
109
+ if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
110
+ # bs, num_q, num_k
111
+ src_mask = src_mask.repeat(self.nhead, 1, 1)
112
+
113
+ q = k = self.with_pos_embed(src, pos)
114
+
115
+ src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
116
+
117
+ # src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
118
+ src = src + self.dropout1(src2)
119
+ src = self.norm1(src)
120
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
121
+ src = src + self.dropout2(src2)
122
+ src = self.norm2(src)
123
+ return src
groundingdino/models/GroundingDINO/utils.py ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+
8
+ import copy
9
+ import math
10
+
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from torch import Tensor, nn
14
+
15
+
16
+ def _get_clones(module, N, layer_share=False):
17
+ # import ipdb; ipdb.set_trace()
18
+ if layer_share:
19
+ return nn.ModuleList([module for i in range(N)])
20
+ else:
21
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
22
+
23
+
24
+ def get_sine_pos_embed(
25
+ pos_tensor: torch.Tensor,
26
+ num_pos_feats: int = 128,
27
+ temperature: int = 10000,
28
+ exchange_xy: bool = True,
29
+ ):
30
+ """generate sine position embedding from a position tensor
31
+ Args:
32
+ pos_tensor (torch.Tensor): shape: [..., n].
33
+ num_pos_feats (int): projected shape for each float in the tensor.
34
+ temperature (int): temperature in the sine/cosine function.
35
+ exchange_xy (bool, optional): exchange pos x and pos y. \
36
+ For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
37
+ Returns:
38
+ pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
39
+ """
40
+ scale = 2 * math.pi
41
+ dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
42
+ dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
43
+
44
+ def sine_func(x: torch.Tensor):
45
+ sin_x = x * scale / dim_t
46
+ sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
47
+ return sin_x
48
+
49
+ pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
50
+ if exchange_xy:
51
+ pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
52
+ pos_res = torch.cat(pos_res, dim=-1)
53
+ return pos_res
54
+
55
+
56
+ def gen_encoder_output_proposals(
57
+ memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None
58
+ ):
59
+ """
60
+ Input:
61
+ - memory: bs, \sum{hw}, d_model
62
+ - memory_padding_mask: bs, \sum{hw}
63
+ - spatial_shapes: nlevel, 2
64
+ - learnedwh: 2
65
+ Output:
66
+ - output_memory: bs, \sum{hw}, d_model
67
+ - output_proposals: bs, \sum{hw}, 4
68
+ """
69
+ N_, S_, C_ = memory.shape
70
+ proposals = []
71
+ _cur = 0
72
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
73
+ mask_flatten_ = memory_padding_mask[:, _cur : (_cur + H_ * W_)].view(N_, H_, W_, 1)
74
+ valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
75
+ valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
76
+
77
+ # import ipdb; ipdb.set_trace()
78
+
79
+ grid_y, grid_x = torch.meshgrid(
80
+ torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
81
+ torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device),
82
+ )
83
+ grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
84
+
85
+ scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
86
+ grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
87
+
88
+ if learnedwh is not None:
89
+ # import ipdb; ipdb.set_trace()
90
+ wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0**lvl)
91
+ else:
92
+ wh = torch.ones_like(grid) * 0.05 * (2.0**lvl)
93
+
94
+ # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
95
+ # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
96
+ # wh = torch.ones_like(grid) / scale
97
+ proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
98
+ proposals.append(proposal)
99
+ _cur += H_ * W_
100
+ # import ipdb; ipdb.set_trace()
101
+ output_proposals = torch.cat(proposals, 1)
102
+ output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(
103
+ -1, keepdim=True
104
+ )
105
+ output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
106
+ output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float("inf"))
107
+ output_proposals = output_proposals.masked_fill(~output_proposals_valid, float("inf"))
108
+
109
+ output_memory = memory
110
+ output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
111
+ output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
112
+
113
+ # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
114
+ # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
115
+
116
+ return output_memory, output_proposals
117
+
118
+
119
+ class RandomBoxPerturber:
120
+ def __init__(
121
+ self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2
122
+ ) -> None:
123
+ self.noise_scale = torch.Tensor(
124
+ [x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]
125
+ )
126
+
127
+ def __call__(self, refanchors: Tensor) -> Tensor:
128
+ nq, bs, query_dim = refanchors.shape
129
+ device = refanchors.device
130
+
131
+ noise_raw = torch.rand_like(refanchors)
132
+ noise_scale = self.noise_scale.to(device)[:query_dim]
133
+
134
+ new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
135
+ return new_refanchors.clamp_(0, 1)
136
+
137
+
138
+ def sigmoid_focal_loss(
139
+ inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False
140
+ ):
141
+ """
142
+ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
143
+ Args:
144
+ inputs: A float tensor of arbitrary shape.
145
+ The predictions for each example.
146
+ targets: A float tensor with the same shape as inputs. Stores the binary
147
+ classification label for each element in inputs
148
+ (0 for the negative class and 1 for the positive class).
149
+ alpha: (optional) Weighting factor in range (0,1) to balance
150
+ positive vs negative examples. Default = -1 (no weighting).
151
+ gamma: Exponent of the modulating factor (1 - p_t) to
152
+ balance easy vs hard examples.
153
+ Returns:
154
+ Loss tensor
155
+ """
156
+ prob = inputs.sigmoid()
157
+ ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
158
+ p_t = prob * targets + (1 - prob) * (1 - targets)
159
+ loss = ce_loss * ((1 - p_t) ** gamma)
160
+
161
+ if alpha >= 0:
162
+ alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
163
+ loss = alpha_t * loss
164
+
165
+ if no_reduction:
166
+ return loss
167
+
168
+ return loss.mean(1).sum() / num_boxes
169
+
170
+
171
+ class MLP(nn.Module):
172
+ """Very simple multi-layer perceptron (also called FFN)"""
173
+
174
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
175
+ super().__init__()
176
+ self.num_layers = num_layers
177
+ h = [hidden_dim] * (num_layers - 1)
178
+ self.layers = nn.ModuleList(
179
+ nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
180
+ )
181
+
182
+ def forward(self, x):
183
+ for i, layer in enumerate(self.layers):
184
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
185
+ return x
186
+
187
+
188
+ def _get_activation_fn(activation, d_model=256, batch_dim=0):
189
+ """Return an activation function given a string"""
190
+ if activation == "relu":
191
+ return F.relu
192
+ if activation == "gelu":
193
+ return F.gelu
194
+ if activation == "glu":
195
+ return F.glu
196
+ if activation == "prelu":
197
+ return nn.PReLU()
198
+ if activation == "selu":
199
+ return F.selu
200
+
201
+ raise RuntimeError(f"activation should be relu/gelu, not {activation}.")
202
+
203
+
204
+ def gen_sineembed_for_position(pos_tensor):
205
+ # n_query, bs, _ = pos_tensor.size()
206
+ # sineembed_tensor = torch.zeros(n_query, bs, 256)
207
+ scale = 2 * math.pi
208
+ dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
209
+ dim_t = 10000 ** (2 * (torch.div(dim_t, 2, rounding_mode='floor')) / 128)
210
+ x_embed = pos_tensor[:, :, 0] * scale
211
+ y_embed = pos_tensor[:, :, 1] * scale
212
+ pos_x = x_embed[:, :, None] / dim_t
213
+ pos_y = y_embed[:, :, None] / dim_t
214
+ pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
215
+ pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
216
+ if pos_tensor.size(-1) == 2:
217
+ pos = torch.cat((pos_y, pos_x), dim=2)
218
+ elif pos_tensor.size(-1) == 4:
219
+ w_embed = pos_tensor[:, :, 2] * scale
220
+ pos_w = w_embed[:, :, None] / dim_t
221
+ pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
222
+
223
+ h_embed = pos_tensor[:, :, 3] * scale
224
+ pos_h = h_embed[:, :, None] / dim_t
225
+ pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
226
+
227
+ pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
228
+ else:
229
+ raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
230
+ return pos
231
+
232
+
233
+ class ContrastiveEmbed(nn.Module):
234
+ def __init__(self, max_text_len=256):
235
+ """
236
+ Args:
237
+ max_text_len: max length of text.
238
+ """
239
+ super().__init__()
240
+ self.max_text_len = max_text_len
241
+
242
+ def forward(self, x, text_dict):
243
+ """_summary_
244
+
245
+ Args:
246
+ x (_type_): _description_
247
+ text_dict (_type_): _description_
248
+ {
249
+ 'encoded_text': encoded_text, # bs, 195, d_model
250
+ 'text_token_mask': text_token_mask, # bs, 195
251
+ # True for used tokens. False for padding tokens
252
+ }
253
+ Returns:
254
+ _type_: _description_
255
+ """
256
+ assert isinstance(text_dict, dict)
257
+
258
+ y = text_dict["encoded_text"]
259
+ text_token_mask = text_dict["text_token_mask"]
260
+
261
+ res = x @ y.transpose(-1, -2)
262
+ res.masked_fill_(~text_token_mask[:, None, :], float("-inf"))
263
+
264
+ # padding to max_text_len
265
+ new_res = torch.full((*res.shape[:-1], self.max_text_len), float("-inf"), device=res.device)
266
+ new_res[..., : res.shape[-1]] = res
267
+
268
+ return new_res
groundingdino/models/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
8
+ from .GroundingDINO import build_groundingdino
9
+
10
+
11
+ def build_model(args):
12
+ # we use register to maintain models from catdet6 on.
13
+ from .registry import MODULE_BUILD_FUNCS
14
+
15
+ assert args.modelname in MODULE_BUILD_FUNCS._module_dict
16
+ build_func = MODULE_BUILD_FUNCS.get(args.modelname)
17
+ model = build_func(args)
18
+ return model
groundingdino/models/registry.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ------------------------------------------------------------------------
2
+ # Grounding DINO
3
+ # url: https://github.com/IDEA-Research/GroundingDINO
4
+ # Copyright (c) 2023 IDEA. All Rights Reserved.
5
+ # Licensed under the Apache License, Version 2.0 [see LICENSE for details]
6
+ # ------------------------------------------------------------------------
7
+ # -*- coding: utf-8 -*-
8
+ # @Author: Yihao Chen
9
+ # @Date: 2021-08-16 16:03:17
10
+ # @Last Modified by: Shilong Liu
11
+ # @Last Modified time: 2022-01-23 15:26
12
+ # modified from mmcv
13
+
14
+ import inspect
15
+ from functools import partial
16
+
17
+
18
+ class Registry(object):
19
+ def __init__(self, name):
20
+ self._name = name
21
+ self._module_dict = dict()
22
+
23
+ def __repr__(self):
24
+ format_str = self.__class__.__name__ + "(name={}, items={})".format(
25
+ self._name, list(self._module_dict.keys())
26
+ )
27
+ return format_str
28
+
29
+ def __len__(self):
30
+ return len(self._module_dict)
31
+
32
+ @property
33
+ def name(self):
34
+ return self._name
35
+
36
+ @property
37
+ def module_dict(self):
38
+ return self._module_dict
39
+
40
+ def get(self, key):
41
+ return self._module_dict.get(key, None)
42
+
43
+ def registe_with_name(self, module_name=None, force=False):
44
+ return partial(self.register, module_name=module_name, force=force)
45
+
46
+ def register(self, module_build_function, module_name=None, force=False):
47
+ """Register a module build function.
48
+ Args:
49
+ module (:obj:`nn.Module`): Module to be registered.
50
+ """
51
+ if not inspect.isfunction(module_build_function):
52
+ raise TypeError(
53
+ "module_build_function must be a function, but got {}".format(
54
+ type(module_build_function)
55
+ )
56
+ )
57
+ if module_name is None:
58
+ module_name = module_build_function.__name__
59
+ if not force and module_name in self._module_dict:
60
+ raise KeyError("{} is already registered in {}".format(module_name, self.name))
61
+ self._module_dict[module_name] = module_build_function
62
+
63
+ return module_build_function
64
+
65
+
66
+ MODULE_BUILD_FUNCS = Registry("model build functions")
groundingdino/util/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
groundingdino/util/box_ops.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ """
3
+ Utilities for bounding box manipulation and GIoU.
4
+ """
5
+ import torch
6
+ from torchvision.ops.boxes import box_area
7
+
8
+
9
+ def box_cxcywh_to_xyxy(x):
10
+ x_c, y_c, w, h = x.unbind(-1)
11
+ b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
12
+ return torch.stack(b, dim=-1)
13
+
14
+
15
+ def box_xyxy_to_cxcywh(x):
16
+ x0, y0, x1, y1 = x.unbind(-1)
17
+ b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
18
+ return torch.stack(b, dim=-1)
19
+
20
+
21
+ # modified from torchvision to also return the union
22
+ def box_iou(boxes1, boxes2):
23
+ area1 = box_area(boxes1)
24
+ area2 = box_area(boxes2)
25
+
26
+ # import ipdb; ipdb.set_trace()
27
+ lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
28
+ rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
29
+
30
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
31
+ inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
32
+
33
+ union = area1[:, None] + area2 - inter
34
+
35
+ iou = inter / (union + 1e-6)
36
+ return iou, union
37
+
38
+
39
+ def generalized_box_iou(boxes1, boxes2):
40
+ """
41
+ Generalized IoU from https://giou.stanford.edu/
42
+
43
+ The boxes should be in [x0, y0, x1, y1] format
44
+
45
+ Returns a [N, M] pairwise matrix, where N = len(boxes1)
46
+ and M = len(boxes2)
47
+ """
48
+ # degenerate boxes gives inf / nan results
49
+ # so do an early check
50
+ assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
51
+ assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
52
+ # except:
53
+ # import ipdb; ipdb.set_trace()
54
+ iou, union = box_iou(boxes1, boxes2)
55
+
56
+ lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
57
+ rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
58
+
59
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
60
+ area = wh[:, :, 0] * wh[:, :, 1]
61
+
62
+ return iou - (area - union) / (area + 1e-6)
63
+
64
+
65
+ # modified from torchvision to also return the union
66
+ def box_iou_pairwise(boxes1, boxes2):
67
+ area1 = box_area(boxes1)
68
+ area2 = box_area(boxes2)
69
+
70
+ lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
71
+ rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
72
+
73
+ wh = (rb - lt).clamp(min=0) # [N,2]
74
+ inter = wh[:, 0] * wh[:, 1] # [N]
75
+
76
+ union = area1 + area2 - inter
77
+
78
+ iou = inter / union
79
+ return iou, union
80
+
81
+
82
+ def generalized_box_iou_pairwise(boxes1, boxes2):
83
+ """
84
+ Generalized IoU from https://giou.stanford.edu/
85
+
86
+ Input:
87
+ - boxes1, boxes2: N,4
88
+ Output:
89
+ - giou: N, 4
90
+ """
91
+ # degenerate boxes gives inf / nan results
92
+ # so do an early check
93
+ assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
94
+ assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
95
+ assert boxes1.shape == boxes2.shape
96
+ iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
97
+
98
+ lt = torch.min(boxes1[:, :2], boxes2[:, :2])
99
+ rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
100
+
101
+ wh = (rb - lt).clamp(min=0) # [N,2]
102
+ area = wh[:, 0] * wh[:, 1]
103
+
104
+ return iou - (area - union) / area
105
+
106
+
107
+ def masks_to_boxes(masks):
108
+ """Compute the bounding boxes around the provided masks
109
+
110
+ The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
111
+
112
+ Returns a [N, 4] tensors, with the boxes in xyxy format
113
+ """
114
+ if masks.numel() == 0:
115
+ return torch.zeros((0, 4), device=masks.device)
116
+
117
+ h, w = masks.shape[-2:]
118
+
119
+ y = torch.arange(0, h, dtype=torch.float)
120
+ x = torch.arange(0, w, dtype=torch.float)
121
+ y, x = torch.meshgrid(y, x)
122
+
123
+ x_mask = masks * x.unsqueeze(0)
124
+ x_max = x_mask.flatten(1).max(-1)[0]
125
+ x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
126
+
127
+ y_mask = masks * y.unsqueeze(0)
128
+ y_max = y_mask.flatten(1).max(-1)[0]
129
+ y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
130
+
131
+ return torch.stack([x_min, y_min, x_max, y_max], 1)
132
+
133
+
134
+ if __name__ == "__main__":
135
+ x = torch.rand(5, 4)
136
+ y = torch.rand(3, 4)
137
+ iou, union = box_iou(x, y)
138
+ import ipdb
139
+
140
+ ipdb.set_trace()
groundingdino/util/get_tokenlizer.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, BertModel, BertTokenizer, RobertaModel, RobertaTokenizerFast
2
+ import os
3
+
4
+ def get_tokenlizer(text_encoder_type):
5
+ if not isinstance(text_encoder_type, str):
6
+ # print("text_encoder_type is not a str")
7
+ if hasattr(text_encoder_type, "text_encoder_type"):
8
+ text_encoder_type = text_encoder_type.text_encoder_type
9
+ elif text_encoder_type.get("text_encoder_type", False):
10
+ text_encoder_type = text_encoder_type.get("text_encoder_type")
11
+ elif os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type):
12
+ pass
13
+ else:
14
+ raise ValueError(
15
+ "Unknown type of text_encoder_type: {}".format(type(text_encoder_type))
16
+ )
17
+ print("final text_encoder_type: {}".format(text_encoder_type))
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained(text_encoder_type)
20
+ return tokenizer
21
+
22
+
23
+ def get_pretrained_language_model(text_encoder_type):
24
+ if text_encoder_type == "bert-base-uncased" or (os.path.isdir(text_encoder_type) and os.path.exists(text_encoder_type)):
25
+ return BertModel.from_pretrained(text_encoder_type)
26
+ if text_encoder_type == "roberta-base":
27
+ return RobertaModel.from_pretrained(text_encoder_type)
28
+
29
+ raise ValueError("Unknown text_encoder_type {}".format(text_encoder_type))
groundingdino/util/inference.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Tuple, List
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import supervision as sv
6
+ import torch
7
+ from PIL import Image
8
+ from torchvision.ops import box_convert
9
+ import bisect
10
+
11
+ import groundingdino.datasets.transforms as T
12
+ from groundingdino.models import build_model
13
+ from groundingdino.util.misc import clean_state_dict
14
+ from groundingdino.util.slconfig import SLConfig
15
+ from groundingdino.util.utils import get_phrases_from_posmap
16
+
17
+ # ----------------------------------------------------------------------------------------------------------------------
18
+ # OLD API
19
+ # ----------------------------------------------------------------------------------------------------------------------
20
+
21
+
22
+ def preprocess_caption(caption: str) -> str:
23
+ result = caption.lower().strip()
24
+ if result.endswith("."):
25
+ return result
26
+ return result + "."
27
+
28
+
29
+ def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
30
+ args = SLConfig.fromfile(model_config_path)
31
+ args.device = device
32
+ model = build_model(args)
33
+ checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
34
+ model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
35
+ model.eval()
36
+ return model
37
+
38
+
39
+ def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
40
+ transform = T.Compose(
41
+ [
42
+ T.RandomResize([800], max_size=1333),
43
+ T.ToTensor(),
44
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
45
+ ]
46
+ )
47
+ image_source = Image.open(image_path).convert("RGB")
48
+ image = np.asarray(image_source)
49
+ image_transformed, _ = transform(image_source, None)
50
+ return image, image_transformed
51
+
52
+
53
+ def predict(
54
+ model,
55
+ image: torch.Tensor,
56
+ caption: str,
57
+ box_threshold: float,
58
+ text_threshold: float,
59
+ device: str = "cuda",
60
+ remove_combined: bool = False
61
+ ) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
62
+ caption = preprocess_caption(caption=caption)
63
+
64
+ model = model.to(device)
65
+ image = image.to(device)
66
+
67
+ with torch.no_grad():
68
+ outputs = model(image[None], captions=[caption])
69
+
70
+ prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
71
+ prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
72
+
73
+ mask = prediction_logits.max(dim=1)[0] > box_threshold
74
+ logits = prediction_logits[mask] # logits.shape = (n, 256)
75
+ boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
76
+
77
+ tokenizer = model.tokenizer
78
+ tokenized = tokenizer(caption)
79
+
80
+ if remove_combined:
81
+ sep_idx = [i for i in range(len(tokenized['input_ids'])) if tokenized['input_ids'][i] in [101, 102, 1012]]
82
+
83
+ phrases = []
84
+ for logit in logits:
85
+ max_idx = logit.argmax()
86
+ insert_idx = bisect.bisect_left(sep_idx, max_idx)
87
+ right_idx = sep_idx[insert_idx]
88
+ left_idx = sep_idx[insert_idx - 1]
89
+ phrases.append(get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer, left_idx, right_idx).replace('.', ''))
90
+ else:
91
+ phrases = [
92
+ get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
93
+ for logit
94
+ in logits
95
+ ]
96
+
97
+ return boxes, logits.max(dim=1)[0], phrases
98
+
99
+
100
+ def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
101
+ h, w, _ = image_source.shape
102
+ boxes = boxes * torch.Tensor([w, h, w, h])
103
+ xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
104
+ detections = sv.Detections(xyxy=xyxy)
105
+
106
+ labels = [
107
+ f"{phrase} {logit:.2f}"
108
+ for phrase, logit
109
+ in zip(phrases, logits)
110
+ ]
111
+
112
+ box_annotator = sv.BoxAnnotator()
113
+ annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
114
+ annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
115
+ return annotated_frame
116
+
117
+
118
+ # ----------------------------------------------------------------------------------------------------------------------
119
+ # NEW API
120
+ # ----------------------------------------------------------------------------------------------------------------------
121
+
122
+
123
+ class Model:
124
+
125
+ def __init__(
126
+ self,
127
+ model_config_path: str,
128
+ model_checkpoint_path: str,
129
+ device: str = "cuda"
130
+ ):
131
+ self.model = load_model(
132
+ model_config_path=model_config_path,
133
+ model_checkpoint_path=model_checkpoint_path,
134
+ device=device
135
+ ).to(device)
136
+ self.device = device
137
+
138
+ def predict_with_caption(
139
+ self,
140
+ image: np.ndarray,
141
+ caption: str,
142
+ box_threshold: float = 0.35,
143
+ text_threshold: float = 0.25
144
+ ) -> Tuple[sv.Detections, List[str]]:
145
+ """
146
+ import cv2
147
+
148
+ image = cv2.imread(IMAGE_PATH)
149
+
150
+ model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
151
+ detections, labels = model.predict_with_caption(
152
+ image=image,
153
+ caption=caption,
154
+ box_threshold=BOX_THRESHOLD,
155
+ text_threshold=TEXT_THRESHOLD
156
+ )
157
+
158
+ import supervision as sv
159
+
160
+ box_annotator = sv.BoxAnnotator()
161
+ annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
162
+ """
163
+ processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
164
+ boxes, logits, phrases = predict(
165
+ model=self.model,
166
+ image=processed_image,
167
+ caption=caption,
168
+ box_threshold=box_threshold,
169
+ text_threshold=text_threshold,
170
+ device=self.device)
171
+ source_h, source_w, _ = image.shape
172
+ detections = Model.post_process_result(
173
+ source_h=source_h,
174
+ source_w=source_w,
175
+ boxes=boxes,
176
+ logits=logits)
177
+ return detections, phrases
178
+
179
+ def predict_with_classes(
180
+ self,
181
+ image: np.ndarray,
182
+ classes: List[str],
183
+ box_threshold: float,
184
+ text_threshold: float
185
+ ) -> sv.Detections:
186
+ """
187
+ import cv2
188
+
189
+ image = cv2.imread(IMAGE_PATH)
190
+
191
+ model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
192
+ detections = model.predict_with_classes(
193
+ image=image,
194
+ classes=CLASSES,
195
+ box_threshold=BOX_THRESHOLD,
196
+ text_threshold=TEXT_THRESHOLD
197
+ )
198
+
199
+
200
+ import supervision as sv
201
+
202
+ box_annotator = sv.BoxAnnotator()
203
+ annotated_image = box_annotator.annotate(scene=image, detections=detections)
204
+ """
205
+ caption = ". ".join(classes)
206
+ processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
207
+ boxes, logits, phrases = predict(
208
+ model=self.model,
209
+ image=processed_image,
210
+ caption=caption,
211
+ box_threshold=box_threshold,
212
+ text_threshold=text_threshold,
213
+ device=self.device)
214
+ source_h, source_w, _ = image.shape
215
+ detections = Model.post_process_result(
216
+ source_h=source_h,
217
+ source_w=source_w,
218
+ boxes=boxes,
219
+ logits=logits)
220
+ class_id = Model.phrases2classes(phrases=phrases, classes=classes)
221
+ detections.class_id = class_id
222
+ return detections
223
+
224
+ @staticmethod
225
+ def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
226
+ transform = T.Compose(
227
+ [
228
+ T.RandomResize([800], max_size=1333),
229
+ T.ToTensor(),
230
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
231
+ ]
232
+ )
233
+ image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
234
+ image_transformed, _ = transform(image_pillow, None)
235
+ return image_transformed
236
+
237
+ @staticmethod
238
+ def post_process_result(
239
+ source_h: int,
240
+ source_w: int,
241
+ boxes: torch.Tensor,
242
+ logits: torch.Tensor
243
+ ) -> sv.Detections:
244
+ boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
245
+ xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
246
+ confidence = logits.numpy()
247
+ return sv.Detections(xyxy=xyxy, confidence=confidence)
248
+
249
+ @staticmethod
250
+ def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
251
+ class_ids = []
252
+ for phrase in phrases:
253
+ for class_ in classes:
254
+ if class_ in phrase:
255
+ class_ids.append(classes.index(class_))
256
+ break
257
+ else:
258
+ class_ids.append(None)
259
+ return np.array(class_ids)
groundingdino/util/logger.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ import functools
3
+ import logging
4
+ import os
5
+ import sys
6
+
7
+ from termcolor import colored
8
+
9
+
10
+ class _ColorfulFormatter(logging.Formatter):
11
+ def __init__(self, *args, **kwargs):
12
+ self._root_name = kwargs.pop("root_name") + "."
13
+ self._abbrev_name = kwargs.pop("abbrev_name", "")
14
+ if len(self._abbrev_name):
15
+ self._abbrev_name = self._abbrev_name + "."
16
+ super(_ColorfulFormatter, self).__init__(*args, **kwargs)
17
+
18
+ def formatMessage(self, record):
19
+ record.name = record.name.replace(self._root_name, self._abbrev_name)
20
+ log = super(_ColorfulFormatter, self).formatMessage(record)
21
+ if record.levelno == logging.WARNING:
22
+ prefix = colored("WARNING", "red", attrs=["blink"])
23
+ elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
24
+ prefix = colored("ERROR", "red", attrs=["blink", "underline"])
25
+ else:
26
+ return log
27
+ return prefix + " " + log
28
+
29
+
30
+ # so that calling setup_logger multiple times won't add many handlers
31
+ @functools.lru_cache()
32
+ def setup_logger(output=None, distributed_rank=0, *, color=True, name="imagenet", abbrev_name=None):
33
+ """
34
+ Initialize the detectron2 logger and set its verbosity level to "INFO".
35
+
36
+ Args:
37
+ output (str): a file name or a directory to save log. If None, will not save log file.
38
+ If ends with ".txt" or ".log", assumed to be a file name.
39
+ Otherwise, logs will be saved to `output/log.txt`.
40
+ name (str): the root module name of this logger
41
+
42
+ Returns:
43
+ logging.Logger: a logger
44
+ """
45
+ logger = logging.getLogger(name)
46
+ logger.setLevel(logging.DEBUG)
47
+ logger.propagate = False
48
+
49
+ if abbrev_name is None:
50
+ abbrev_name = name
51
+
52
+ plain_formatter = logging.Formatter(
53
+ "[%(asctime)s.%(msecs)03d]: %(message)s", datefmt="%m/%d %H:%M:%S"
54
+ )
55
+ # stdout logging: master only
56
+ if distributed_rank == 0:
57
+ ch = logging.StreamHandler(stream=sys.stdout)
58
+ ch.setLevel(logging.DEBUG)
59
+ if color:
60
+ formatter = _ColorfulFormatter(
61
+ colored("[%(asctime)s.%(msecs)03d]: ", "green") + "%(message)s",
62
+ datefmt="%m/%d %H:%M:%S",
63
+ root_name=name,
64
+ abbrev_name=str(abbrev_name),
65
+ )
66
+ else:
67
+ formatter = plain_formatter
68
+ ch.setFormatter(formatter)
69
+ logger.addHandler(ch)
70
+
71
+ # file logging: all workers
72
+ if output is not None:
73
+ if output.endswith(".txt") or output.endswith(".log"):
74
+ filename = output
75
+ else:
76
+ filename = os.path.join(output, "log.txt")
77
+ if distributed_rank > 0:
78
+ filename = filename + f".rank{distributed_rank}"
79
+ os.makedirs(os.path.dirname(filename), exist_ok=True)
80
+
81
+ fh = logging.StreamHandler(_cached_log_stream(filename))
82
+ fh.setLevel(logging.DEBUG)
83
+ fh.setFormatter(plain_formatter)
84
+ logger.addHandler(fh)
85
+
86
+ return logger
87
+
88
+
89
+ # cache the opened file object, so that different calls to `setup_logger`
90
+ # with the same file name can safely write to the same file.
91
+ @functools.lru_cache(maxsize=None)
92
+ def _cached_log_stream(filename):
93
+ return open(filename, "a")
groundingdino/util/misc.py ADDED
@@ -0,0 +1,717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
2
+ """
3
+ Misc functions, including distributed helpers.
4
+
5
+ Mostly copy-paste from torchvision references.
6
+ """
7
+ import colorsys
8
+ import datetime
9
+ import functools
10
+ import io
11
+ import json
12
+ import os
13
+ import pickle
14
+ import subprocess
15
+ import time
16
+ from collections import OrderedDict, defaultdict, deque
17
+ from typing import List, Optional
18
+
19
+ import numpy as np
20
+ import torch
21
+ import torch.distributed as dist
22
+
23
+ # needed due to empty tensor bug in pytorch and torchvision 0.5
24
+ import torchvision
25
+ from torch import Tensor
26
+
27
+ __torchvision_need_compat_flag = float(torchvision.__version__.split(".")[1]) < 7
28
+ if __torchvision_need_compat_flag:
29
+ from torchvision.ops import _new_empty_tensor
30
+ from torchvision.ops.misc import _output_size
31
+
32
+
33
+ class SmoothedValue(object):
34
+ """Track a series of values and provide access to smoothed values over a
35
+ window or the global series average.
36
+ """
37
+
38
+ def __init__(self, window_size=20, fmt=None):
39
+ if fmt is None:
40
+ fmt = "{median:.4f} ({global_avg:.4f})"
41
+ self.deque = deque(maxlen=window_size)
42
+ self.total = 0.0
43
+ self.count = 0
44
+ self.fmt = fmt
45
+
46
+ def update(self, value, n=1):
47
+ self.deque.append(value)
48
+ self.count += n
49
+ self.total += value * n
50
+
51
+ def synchronize_between_processes(self):
52
+ """
53
+ Warning: does not synchronize the deque!
54
+ """
55
+ if not is_dist_avail_and_initialized():
56
+ return
57
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda")
58
+ dist.barrier()
59
+ dist.all_reduce(t)
60
+ t = t.tolist()
61
+ self.count = int(t[0])
62
+ self.total = t[1]
63
+
64
+ @property
65
+ def median(self):
66
+ d = torch.tensor(list(self.deque))
67
+ if d.shape[0] == 0:
68
+ return 0
69
+ return d.median().item()
70
+
71
+ @property
72
+ def avg(self):
73
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
74
+ return d.mean().item()
75
+
76
+ @property
77
+ def global_avg(self):
78
+ if os.environ.get("SHILONG_AMP", None) == "1":
79
+ eps = 1e-4
80
+ else:
81
+ eps = 1e-6
82
+ return self.total / (self.count + eps)
83
+
84
+ @property
85
+ def max(self):
86
+ return max(self.deque)
87
+
88
+ @property
89
+ def value(self):
90
+ return self.deque[-1]
91
+
92
+ def __str__(self):
93
+ return self.fmt.format(
94
+ median=self.median,
95
+ avg=self.avg,
96
+ global_avg=self.global_avg,
97
+ max=self.max,
98
+ value=self.value,
99
+ )
100
+
101
+
102
+ @functools.lru_cache()
103
+ def _get_global_gloo_group():
104
+ """
105
+ Return a process group based on gloo backend, containing all the ranks
106
+ The result is cached.
107
+ """
108
+
109
+ if dist.get_backend() == "nccl":
110
+ return dist.new_group(backend="gloo")
111
+
112
+ return dist.group.WORLD
113
+
114
+
115
+ def all_gather_cpu(data):
116
+ """
117
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
118
+ Args:
119
+ data: any picklable object
120
+ Returns:
121
+ list[data]: list of data gathered from each rank
122
+ """
123
+
124
+ world_size = get_world_size()
125
+ if world_size == 1:
126
+ return [data]
127
+
128
+ cpu_group = _get_global_gloo_group()
129
+
130
+ buffer = io.BytesIO()
131
+ torch.save(data, buffer)
132
+ data_view = buffer.getbuffer()
133
+ device = "cuda" if cpu_group is None else "cpu"
134
+ tensor = torch.ByteTensor(data_view).to(device)
135
+
136
+ # obtain Tensor size of each rank
137
+ local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
138
+ size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
139
+ if cpu_group is None:
140
+ dist.all_gather(size_list, local_size)
141
+ else:
142
+ print("gathering on cpu")
143
+ dist.all_gather(size_list, local_size, group=cpu_group)
144
+ size_list = [int(size.item()) for size in size_list]
145
+ max_size = max(size_list)
146
+ assert isinstance(local_size.item(), int)
147
+ local_size = int(local_size.item())
148
+
149
+ # receiving Tensor from all ranks
150
+ # we pad the tensor because torch all_gather does not support
151
+ # gathering tensors of different shapes
152
+ tensor_list = []
153
+ for _ in size_list:
154
+ tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
155
+ if local_size != max_size:
156
+ padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
157
+ tensor = torch.cat((tensor, padding), dim=0)
158
+ if cpu_group is None:
159
+ dist.all_gather(tensor_list, tensor)
160
+ else:
161
+ dist.all_gather(tensor_list, tensor, group=cpu_group)
162
+
163
+ data_list = []
164
+ for size, tensor in zip(size_list, tensor_list):
165
+ tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
166
+ buffer = io.BytesIO(tensor.cpu().numpy())
167
+ obj = torch.load(buffer)
168
+ data_list.append(obj)
169
+
170
+ return data_list
171
+
172
+
173
+ def all_gather(data):
174
+ """
175
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
176
+ Args:
177
+ data: any picklable object
178
+ Returns:
179
+ list[data]: list of data gathered from each rank
180
+ """
181
+
182
+ if os.getenv("CPU_REDUCE") == "1":
183
+ return all_gather_cpu(data)
184
+
185
+ world_size = get_world_size()
186
+ if world_size == 1:
187
+ return [data]
188
+
189
+ # serialized to a Tensor
190
+ buffer = pickle.dumps(data)
191
+ storage = torch.ByteStorage.from_buffer(buffer)
192
+ tensor = torch.ByteTensor(storage).to("cuda")
193
+
194
+ # obtain Tensor size of each rank
195
+ local_size = torch.tensor([tensor.numel()], device="cuda")
196
+ size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
197
+ dist.all_gather(size_list, local_size)
198
+ size_list = [int(size.item()) for size in size_list]
199
+ max_size = max(size_list)
200
+
201
+ # receiving Tensor from all ranks
202
+ # we pad the tensor because torch all_gather does not support
203
+ # gathering tensors of different shapes
204
+ tensor_list = []
205
+ for _ in size_list:
206
+ tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
207
+ if local_size != max_size:
208
+ padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
209
+ tensor = torch.cat((tensor, padding), dim=0)
210
+ dist.all_gather(tensor_list, tensor)
211
+
212
+ data_list = []
213
+ for size, tensor in zip(size_list, tensor_list):
214
+ buffer = tensor.cpu().numpy().tobytes()[:size]
215
+ data_list.append(pickle.loads(buffer))
216
+
217
+ return data_list
218
+
219
+
220
+ def reduce_dict(input_dict, average=True):
221
+ """
222
+ Args:
223
+ input_dict (dict): all the values will be reduced
224
+ average (bool): whether to do average or sum
225
+ Reduce the values in the dictionary from all processes so that all processes
226
+ have the averaged results. Returns a dict with the same fields as
227
+ input_dict, after reduction.
228
+ """
229
+ world_size = get_world_size()
230
+ if world_size < 2:
231
+ return input_dict
232
+ with torch.no_grad():
233
+ names = []
234
+ values = []
235
+ # sort the keys so that they are consistent across processes
236
+ for k in sorted(input_dict.keys()):
237
+ names.append(k)
238
+ values.append(input_dict[k])
239
+ values = torch.stack(values, dim=0)
240
+ dist.all_reduce(values)
241
+ if average:
242
+ values /= world_size
243
+ reduced_dict = {k: v for k, v in zip(names, values)}
244
+ return reduced_dict
245
+
246
+
247
+ class MetricLogger(object):
248
+ def __init__(self, delimiter="\t"):
249
+ self.meters = defaultdict(SmoothedValue)
250
+ self.delimiter = delimiter
251
+
252
+ def update(self, **kwargs):
253
+ for k, v in kwargs.items():
254
+ if isinstance(v, torch.Tensor):
255
+ v = v.item()
256
+ assert isinstance(v, (float, int))
257
+ self.meters[k].update(v)
258
+
259
+ def __getattr__(self, attr):
260
+ if attr in self.meters:
261
+ return self.meters[attr]
262
+ if attr in self.__dict__:
263
+ return self.__dict__[attr]
264
+ raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
265
+
266
+ def __str__(self):
267
+ loss_str = []
268
+ for name, meter in self.meters.items():
269
+ # print(name, str(meter))
270
+ # import ipdb;ipdb.set_trace()
271
+ if meter.count > 0:
272
+ loss_str.append("{}: {}".format(name, str(meter)))
273
+ return self.delimiter.join(loss_str)
274
+
275
+ def synchronize_between_processes(self):
276
+ for meter in self.meters.values():
277
+ meter.synchronize_between_processes()
278
+
279
+ def add_meter(self, name, meter):
280
+ self.meters[name] = meter
281
+
282
+ def log_every(self, iterable, print_freq, header=None, logger=None):
283
+ if logger is None:
284
+ print_func = print
285
+ else:
286
+ print_func = logger.info
287
+
288
+ i = 0
289
+ if not header:
290
+ header = ""
291
+ start_time = time.time()
292
+ end = time.time()
293
+ iter_time = SmoothedValue(fmt="{avg:.4f}")
294
+ data_time = SmoothedValue(fmt="{avg:.4f}")
295
+ space_fmt = ":" + str(len(str(len(iterable)))) + "d"
296
+ if torch.cuda.is_available():
297
+ log_msg = self.delimiter.join(
298
+ [
299
+ header,
300
+ "[{0" + space_fmt + "}/{1}]",
301
+ "eta: {eta}",
302
+ "{meters}",
303
+ "time: {time}",
304
+ "data: {data}",
305
+ "max mem: {memory:.0f}",
306
+ ]
307
+ )
308
+ else:
309
+ log_msg = self.delimiter.join(
310
+ [
311
+ header,
312
+ "[{0" + space_fmt + "}/{1}]",
313
+ "eta: {eta}",
314
+ "{meters}",
315
+ "time: {time}",
316
+ "data: {data}",
317
+ ]
318
+ )
319
+ MB = 1024.0 * 1024.0
320
+ for obj in iterable:
321
+ data_time.update(time.time() - end)
322
+ yield obj
323
+ # import ipdb; ipdb.set_trace()
324
+ iter_time.update(time.time() - end)
325
+ if i % print_freq == 0 or i == len(iterable) - 1:
326
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
327
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
328
+ if torch.cuda.is_available():
329
+ print_func(
330
+ log_msg.format(
331
+ i,
332
+ len(iterable),
333
+ eta=eta_string,
334
+ meters=str(self),
335
+ time=str(iter_time),
336
+ data=str(data_time),
337
+ memory=torch.cuda.max_memory_allocated() / MB,
338
+ )
339
+ )
340
+ else:
341
+ print_func(
342
+ log_msg.format(
343
+ i,
344
+ len(iterable),
345
+ eta=eta_string,
346
+ meters=str(self),
347
+ time=str(iter_time),
348
+ data=str(data_time),
349
+ )
350
+ )
351
+ i += 1
352
+ end = time.time()
353
+ total_time = time.time() - start_time
354
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
355
+ print_func(
356
+ "{} Total time: {} ({:.4f} s / it)".format(
357
+ header, total_time_str, total_time / len(iterable)
358
+ )
359
+ )
360
+
361
+
362
+ def get_sha():
363
+ cwd = os.path.dirname(os.path.abspath(__file__))
364
+
365
+ def _run(command):
366
+ return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()
367
+
368
+ sha = "N/A"
369
+ diff = "clean"
370
+ branch = "N/A"
371
+ try:
372
+ sha = _run(["git", "rev-parse", "HEAD"])
373
+ subprocess.check_output(["git", "diff"], cwd=cwd)
374
+ diff = _run(["git", "diff-index", "HEAD"])
375
+ diff = "has uncommited changes" if diff else "clean"
376
+ branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
377
+ except Exception:
378
+ pass
379
+ message = f"sha: {sha}, status: {diff}, branch: {branch}"
380
+ return message
381
+
382
+
383
+ def collate_fn(batch):
384
+ # import ipdb; ipdb.set_trace()
385
+ batch = list(zip(*batch))
386
+ batch[0] = nested_tensor_from_tensor_list(batch[0])
387
+ return tuple(batch)
388
+
389
+
390
+ def _max_by_axis(the_list):
391
+ # type: (List[List[int]]) -> List[int]
392
+ maxes = the_list[0]
393
+ for sublist in the_list[1:]:
394
+ for index, item in enumerate(sublist):
395
+ maxes[index] = max(maxes[index], item)
396
+ return maxes
397
+
398
+
399
+ class NestedTensor(object):
400
+ def __init__(self, tensors, mask: Optional[Tensor]):
401
+ self.tensors = tensors
402
+ self.mask = mask
403
+ if mask == "auto":
404
+ self.mask = torch.zeros_like(tensors).to(tensors.device)
405
+ if self.mask.dim() == 3:
406
+ self.mask = self.mask.sum(0).to(bool)
407
+ elif self.mask.dim() == 4:
408
+ self.mask = self.mask.sum(1).to(bool)
409
+ else:
410
+ raise ValueError(
411
+ "tensors dim must be 3 or 4 but {}({})".format(
412
+ self.tensors.dim(), self.tensors.shape
413
+ )
414
+ )
415
+
416
+ def imgsize(self):
417
+ res = []
418
+ for i in range(self.tensors.shape[0]):
419
+ mask = self.mask[i]
420
+ maxH = (~mask).sum(0).max()
421
+ maxW = (~mask).sum(1).max()
422
+ res.append(torch.Tensor([maxH, maxW]))
423
+ return res
424
+
425
+ def to(self, device):
426
+ # type: (Device) -> NestedTensor # noqa
427
+ cast_tensor = self.tensors.to(device)
428
+ mask = self.mask
429
+ if mask is not None:
430
+ assert mask is not None
431
+ cast_mask = mask.to(device)
432
+ else:
433
+ cast_mask = None
434
+ return NestedTensor(cast_tensor, cast_mask)
435
+
436
+ def to_img_list_single(self, tensor, mask):
437
+ assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim())
438
+ maxH = (~mask).sum(0).max()
439
+ maxW = (~mask).sum(1).max()
440
+ img = tensor[:, :maxH, :maxW]
441
+ return img
442
+
443
+ def to_img_list(self):
444
+ """remove the padding and convert to img list
445
+
446
+ Returns:
447
+ [type]: [description]
448
+ """
449
+ if self.tensors.dim() == 3:
450
+ return self.to_img_list_single(self.tensors, self.mask)
451
+ else:
452
+ res = []
453
+ for i in range(self.tensors.shape[0]):
454
+ tensor_i = self.tensors[i]
455
+ mask_i = self.mask[i]
456
+ res.append(self.to_img_list_single(tensor_i, mask_i))
457
+ return res
458
+
459
+ @property
460
+ def device(self):
461
+ return self.tensors.device
462
+
463
+ def decompose(self):
464
+ return self.tensors, self.mask
465
+
466
+ def __repr__(self):
467
+ return str(self.tensors)
468
+
469
+ @property
470
+ def shape(self):
471
+ return {"tensors.shape": self.tensors.shape, "mask.shape": self.mask.shape}
472
+
473
+
474
+ def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
475
+ # TODO make this more general
476
+ if tensor_list[0].ndim == 3:
477
+ if torchvision._is_tracing():
478
+ # nested_tensor_from_tensor_list() does not export well to ONNX
479
+ # call _onnx_nested_tensor_from_tensor_list() instead
480
+ return _onnx_nested_tensor_from_tensor_list(tensor_list)
481
+
482
+ # TODO make it support different-sized images
483
+ max_size = _max_by_axis([list(img.shape) for img in tensor_list])
484
+ # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
485
+ batch_shape = [len(tensor_list)] + max_size
486
+ b, c, h, w = batch_shape
487
+ dtype = tensor_list[0].dtype
488
+ device = tensor_list[0].device
489
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
490
+ mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
491
+ for img, pad_img, m in zip(tensor_list, tensor, mask):
492
+ pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
493
+ m[: img.shape[1], : img.shape[2]] = False
494
+ else:
495
+ raise ValueError("not supported")
496
+ return NestedTensor(tensor, mask)
497
+
498
+
499
+ # _onnx_nested_tensor_from_tensor_list() is an implementation of
500
+ # nested_tensor_from_tensor_list() that is supported by ONNX tracing.
501
+ @torch.jit.unused
502
+ def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
503
+ max_size = []
504
+ for i in range(tensor_list[0].dim()):
505
+ max_size_i = torch.max(
506
+ torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)
507
+ ).to(torch.int64)
508
+ max_size.append(max_size_i)
509
+ max_size = tuple(max_size)
510
+
511
+ # work around for
512
+ # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
513
+ # m[: img.shape[1], :img.shape[2]] = False
514
+ # which is not yet supported in onnx
515
+ padded_imgs = []
516
+ padded_masks = []
517
+ for img in tensor_list:
518
+ padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
519
+ padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
520
+ padded_imgs.append(padded_img)
521
+
522
+ m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
523
+ padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
524
+ padded_masks.append(padded_mask.to(torch.bool))
525
+
526
+ tensor = torch.stack(padded_imgs)
527
+ mask = torch.stack(padded_masks)
528
+
529
+ return NestedTensor(tensor, mask=mask)
530
+
531
+
532
+ def setup_for_distributed(is_master):
533
+ """
534
+ This function disables printing when not in master process
535
+ """
536
+ import builtins as __builtin__
537
+
538
+ builtin_print = __builtin__.print
539
+
540
+ def print(*args, **kwargs):
541
+ force = kwargs.pop("force", False)
542
+ if is_master or force:
543
+ builtin_print(*args, **kwargs)
544
+
545
+ __builtin__.print = print
546
+
547
+
548
+ def is_dist_avail_and_initialized():
549
+ if not dist.is_available():
550
+ return False
551
+ if not dist.is_initialized():
552
+ return False
553
+ return True
554
+
555
+
556
+ def get_world_size():
557
+ if not is_dist_avail_and_initialized():
558
+ return 1
559
+ return dist.get_world_size()
560
+
561
+
562
+ def get_rank():
563
+ if not is_dist_avail_and_initialized():
564
+ return 0
565
+ return dist.get_rank()
566
+
567
+
568
+ def is_main_process():
569
+ return get_rank() == 0
570
+
571
+
572
+ def save_on_master(*args, **kwargs):
573
+ if is_main_process():
574
+ torch.save(*args, **kwargs)
575
+
576
+
577
+ def init_distributed_mode(args):
578
+ if "WORLD_SIZE" in os.environ and os.environ["WORLD_SIZE"] != "": # 'RANK' in os.environ and
579
+ args.rank = int(os.environ["RANK"])
580
+ args.world_size = int(os.environ["WORLD_SIZE"])
581
+ args.gpu = args.local_rank = int(os.environ["LOCAL_RANK"])
582
+
583
+ # launch by torch.distributed.launch
584
+ # Single node
585
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
586
+ # Multi nodes
587
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
588
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
589
+ # args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
590
+ # local_world_size = int(os.environ['GPU_PER_NODE_COUNT'])
591
+ # args.world_size = args.world_size * local_world_size
592
+ # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
593
+ # args.rank = args.rank * local_world_size + args.local_rank
594
+ print(
595
+ "world size: {}, rank: {}, local rank: {}".format(
596
+ args.world_size, args.rank, args.local_rank
597
+ )
598
+ )
599
+ print(json.dumps(dict(os.environ), indent=2))
600
+ elif "SLURM_PROCID" in os.environ:
601
+ args.rank = int(os.environ["SLURM_PROCID"])
602
+ args.gpu = args.local_rank = int(os.environ["SLURM_LOCALID"])
603
+ args.world_size = int(os.environ["SLURM_NPROCS"])
604
+
605
+ print(
606
+ "world size: {}, world rank: {}, local rank: {}, device_count: {}".format(
607
+ args.world_size, args.rank, args.local_rank, torch.cuda.device_count()
608
+ )
609
+ )
610
+ else:
611
+ print("Not using distributed mode")
612
+ args.distributed = False
613
+ args.world_size = 1
614
+ args.rank = 0
615
+ args.local_rank = 0
616
+ return
617
+
618
+ print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
619
+ args.distributed = True
620
+ torch.cuda.set_device(args.local_rank)
621
+ args.dist_backend = "nccl"
622
+ print("| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True)
623
+
624
+ torch.distributed.init_process_group(
625
+ backend=args.dist_backend,
626
+ world_size=args.world_size,
627
+ rank=args.rank,
628
+ init_method=args.dist_url,
629
+ )
630
+
631
+ print("Before torch.distributed.barrier()")
632
+ torch.distributed.barrier()
633
+ print("End torch.distributed.barrier()")
634
+ setup_for_distributed(args.rank == 0)
635
+
636
+
637
+ @torch.no_grad()
638
+ def accuracy(output, target, topk=(1,)):
639
+ """Computes the precision@k for the specified values of k"""
640
+ if target.numel() == 0:
641
+ return [torch.zeros([], device=output.device)]
642
+ maxk = max(topk)
643
+ batch_size = target.size(0)
644
+
645
+ _, pred = output.topk(maxk, 1, True, True)
646
+ pred = pred.t()
647
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
648
+
649
+ res = []
650
+ for k in topk:
651
+ correct_k = correct[:k].view(-1).float().sum(0)
652
+ res.append(correct_k.mul_(100.0 / batch_size))
653
+ return res
654
+
655
+
656
+ @torch.no_grad()
657
+ def accuracy_onehot(pred, gt):
658
+ """_summary_
659
+
660
+ Args:
661
+ pred (_type_): n, c
662
+ gt (_type_): n, c
663
+ """
664
+ tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum()
665
+ acc = tp / gt.shape[0] * 100
666
+ return acc
667
+
668
+
669
+ def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
670
+ # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
671
+ """
672
+ Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
673
+ This will eventually be supported natively by PyTorch, and this
674
+ class can go away.
675
+ """
676
+ if __torchvision_need_compat_flag < 0.7:
677
+ if input.numel() > 0:
678
+ return torch.nn.functional.interpolate(input, size, scale_factor, mode, align_corners)
679
+
680
+ output_shape = _output_size(2, input, size, scale_factor)
681
+ output_shape = list(input.shape[:-2]) + list(output_shape)
682
+ return _new_empty_tensor(input, output_shape)
683
+ else:
684
+ return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
685
+
686
+
687
+ class color_sys:
688
+ def __init__(self, num_colors) -> None:
689
+ self.num_colors = num_colors
690
+ colors = []
691
+ for i in np.arange(0.0, 360.0, 360.0 / num_colors):
692
+ hue = i / 360.0
693
+ lightness = (50 + np.random.rand() * 10) / 100.0
694
+ saturation = (90 + np.random.rand() * 10) / 100.0
695
+ colors.append(
696
+ tuple([int(j * 255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)])
697
+ )
698
+ self.colors = colors
699
+
700
+ def __call__(self, idx):
701
+ return self.colors[idx]
702
+
703
+
704
+ def inverse_sigmoid(x, eps=1e-3):
705
+ x = x.clamp(min=0, max=1)
706
+ x1 = x.clamp(min=eps)
707
+ x2 = (1 - x).clamp(min=eps)
708
+ return torch.log(x1 / x2)
709
+
710
+
711
+ def clean_state_dict(state_dict):
712
+ new_state_dict = OrderedDict()
713
+ for k, v in state_dict.items():
714
+ if k[:7] == "module.":
715
+ k = k[7:] # remove `module.`
716
+ new_state_dict[k] = v
717
+ return new_state_dict
groundingdino/util/slconfig.py ADDED
@@ -0,0 +1,427 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ==========================================================
2
+ # Modified from mmcv
3
+ # ==========================================================
4
+ import ast
5
+ import os
6
+ import os.path as osp
7
+ import shutil
8
+ import sys
9
+ import tempfile
10
+ from argparse import Action
11
+ from importlib import import_module
12
+
13
+ from addict import Dict
14
+ from yapf.yapflib.yapf_api import FormatCode
15
+
16
+ BASE_KEY = "_base_"
17
+ DELETE_KEY = "_delete_"
18
+ RESERVED_KEYS = ["filename", "text", "pretty_text", "get", "dump", "merge_from_dict"]
19
+
20
+
21
+ def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
22
+ if not osp.isfile(filename):
23
+ raise FileNotFoundError(msg_tmpl.format(filename))
24
+
25
+
26
+ class ConfigDict(Dict):
27
+ def __missing__(self, name):
28
+ raise KeyError(name)
29
+
30
+ def __getattr__(self, name):
31
+ try:
32
+ value = super(ConfigDict, self).__getattr__(name)
33
+ except KeyError:
34
+ ex = AttributeError(f"'{self.__class__.__name__}' object has no " f"attribute '{name}'")
35
+ except Exception as e:
36
+ ex = e
37
+ else:
38
+ return value
39
+ raise ex
40
+
41
+
42
+ class SLConfig(object):
43
+ """
44
+ config files.
45
+ only support .py file as config now.
46
+
47
+ ref: mmcv.utils.config
48
+
49
+ Example:
50
+ >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
51
+ >>> cfg.a
52
+ 1
53
+ >>> cfg.b
54
+ {'b1': [0, 1]}
55
+ >>> cfg.b.b1
56
+ [0, 1]
57
+ >>> cfg = Config.fromfile('tests/data/config/a.py')
58
+ >>> cfg.filename
59
+ "/home/kchen/projects/mmcv/tests/data/config/a.py"
60
+ >>> cfg.item4
61
+ 'test'
62
+ >>> cfg
63
+ "Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
64
+ "{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
65
+ """
66
+
67
+ @staticmethod
68
+ def _validate_py_syntax(filename):
69
+ with open(filename) as f:
70
+ content = f.read()
71
+ try:
72
+ ast.parse(content)
73
+ except SyntaxError:
74
+ raise SyntaxError("There are syntax errors in config " f"file {filename}")
75
+
76
+ @staticmethod
77
+ def _file2dict(filename):
78
+ filename = osp.abspath(osp.expanduser(filename))
79
+ check_file_exist(filename)
80
+ if filename.lower().endswith(".py"):
81
+ with tempfile.TemporaryDirectory() as temp_config_dir:
82
+ temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=".py")
83
+ temp_config_name = osp.basename(temp_config_file.name)
84
+ if os.name == 'nt':
85
+ temp_config_file.close()
86
+ shutil.copyfile(filename, osp.join(temp_config_dir, temp_config_name))
87
+ temp_module_name = osp.splitext(temp_config_name)[0]
88
+ sys.path.insert(0, temp_config_dir)
89
+ SLConfig._validate_py_syntax(filename)
90
+ mod = import_module(temp_module_name)
91
+ sys.path.pop(0)
92
+ cfg_dict = {
93
+ name: value for name, value in mod.__dict__.items() if not name.startswith("__")
94
+ }
95
+ # delete imported module
96
+ del sys.modules[temp_module_name]
97
+ # close temp file
98
+ temp_config_file.close()
99
+ elif filename.lower().endswith((".yml", ".yaml", ".json")):
100
+ from .slio import slload
101
+
102
+ cfg_dict = slload(filename)
103
+ else:
104
+ raise IOError("Only py/yml/yaml/json type are supported now!")
105
+
106
+ cfg_text = filename + "\n"
107
+ with open(filename, "r") as f:
108
+ cfg_text += f.read()
109
+
110
+ # parse the base file
111
+ if BASE_KEY in cfg_dict:
112
+ cfg_dir = osp.dirname(filename)
113
+ base_filename = cfg_dict.pop(BASE_KEY)
114
+ base_filename = base_filename if isinstance(base_filename, list) else [base_filename]
115
+
116
+ cfg_dict_list = list()
117
+ cfg_text_list = list()
118
+ for f in base_filename:
119
+ _cfg_dict, _cfg_text = SLConfig._file2dict(osp.join(cfg_dir, f))
120
+ cfg_dict_list.append(_cfg_dict)
121
+ cfg_text_list.append(_cfg_text)
122
+
123
+ base_cfg_dict = dict()
124
+ for c in cfg_dict_list:
125
+ if len(base_cfg_dict.keys() & c.keys()) > 0:
126
+ raise KeyError("Duplicate key is not allowed among bases")
127
+ # TODO Allow the duplicate key while warnning user
128
+ base_cfg_dict.update(c)
129
+
130
+ base_cfg_dict = SLConfig._merge_a_into_b(cfg_dict, base_cfg_dict)
131
+ cfg_dict = base_cfg_dict
132
+
133
+ # merge cfg_text
134
+ cfg_text_list.append(cfg_text)
135
+ cfg_text = "\n".join(cfg_text_list)
136
+
137
+ return cfg_dict, cfg_text
138
+
139
+ @staticmethod
140
+ def _merge_a_into_b(a, b):
141
+ """merge dict `a` into dict `b` (non-inplace).
142
+ values in `a` will overwrite `b`.
143
+ copy first to avoid inplace modification
144
+
145
+ Args:
146
+ a ([type]): [description]
147
+ b ([type]): [description]
148
+
149
+ Returns:
150
+ [dict]: [description]
151
+ """
152
+ # import ipdb; ipdb.set_trace()
153
+ if not isinstance(a, dict):
154
+ return a
155
+
156
+ b = b.copy()
157
+ for k, v in a.items():
158
+ if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False):
159
+
160
+ if not isinstance(b[k], dict) and not isinstance(b[k], list):
161
+ # if :
162
+ # import ipdb; ipdb.set_trace()
163
+ raise TypeError(
164
+ f"{k}={v} in child config cannot inherit from base "
165
+ f"because {k} is a dict in the child config but is of "
166
+ f"type {type(b[k])} in base config. You may set "
167
+ f"`{DELETE_KEY}=True` to ignore the base config"
168
+ )
169
+ b[k] = SLConfig._merge_a_into_b(v, b[k])
170
+ elif isinstance(b, list):
171
+ try:
172
+ _ = int(k)
173
+ except:
174
+ raise TypeError(
175
+ f"b is a list, " f"index {k} should be an int when input but {type(k)}"
176
+ )
177
+ b[int(k)] = SLConfig._merge_a_into_b(v, b[int(k)])
178
+ else:
179
+ b[k] = v
180
+
181
+ return b
182
+
183
+ @staticmethod
184
+ def fromfile(filename):
185
+ cfg_dict, cfg_text = SLConfig._file2dict(filename)
186
+ return SLConfig(cfg_dict, cfg_text=cfg_text, filename=filename)
187
+
188
+ def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
189
+ if cfg_dict is None:
190
+ cfg_dict = dict()
191
+ elif not isinstance(cfg_dict, dict):
192
+ raise TypeError("cfg_dict must be a dict, but " f"got {type(cfg_dict)}")
193
+ for key in cfg_dict:
194
+ if key in RESERVED_KEYS:
195
+ raise KeyError(f"{key} is reserved for config file")
196
+
197
+ super(SLConfig, self).__setattr__("_cfg_dict", ConfigDict(cfg_dict))
198
+ super(SLConfig, self).__setattr__("_filename", filename)
199
+ if cfg_text:
200
+ text = cfg_text
201
+ elif filename:
202
+ with open(filename, "r") as f:
203
+ text = f.read()
204
+ else:
205
+ text = ""
206
+ super(SLConfig, self).__setattr__("_text", text)
207
+
208
+ @property
209
+ def filename(self):
210
+ return self._filename
211
+
212
+ @property
213
+ def text(self):
214
+ return self._text
215
+
216
+ @property
217
+ def pretty_text(self):
218
+
219
+ indent = 4
220
+
221
+ def _indent(s_, num_spaces):
222
+ s = s_.split("\n")
223
+ if len(s) == 1:
224
+ return s_
225
+ first = s.pop(0)
226
+ s = [(num_spaces * " ") + line for line in s]
227
+ s = "\n".join(s)
228
+ s = first + "\n" + s
229
+ return s
230
+
231
+ def _format_basic_types(k, v, use_mapping=False):
232
+ if isinstance(v, str):
233
+ v_str = f"'{v}'"
234
+ else:
235
+ v_str = str(v)
236
+
237
+ if use_mapping:
238
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
239
+ attr_str = f"{k_str}: {v_str}"
240
+ else:
241
+ attr_str = f"{str(k)}={v_str}"
242
+ attr_str = _indent(attr_str, indent)
243
+
244
+ return attr_str
245
+
246
+ def _format_list(k, v, use_mapping=False):
247
+ # check if all items in the list are dict
248
+ if all(isinstance(_, dict) for _ in v):
249
+ v_str = "[\n"
250
+ v_str += "\n".join(
251
+ f"dict({_indent(_format_dict(v_), indent)})," for v_ in v
252
+ ).rstrip(",")
253
+ if use_mapping:
254
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
255
+ attr_str = f"{k_str}: {v_str}"
256
+ else:
257
+ attr_str = f"{str(k)}={v_str}"
258
+ attr_str = _indent(attr_str, indent) + "]"
259
+ else:
260
+ attr_str = _format_basic_types(k, v, use_mapping)
261
+ return attr_str
262
+
263
+ def _contain_invalid_identifier(dict_str):
264
+ contain_invalid_identifier = False
265
+ for key_name in dict_str:
266
+ contain_invalid_identifier |= not str(key_name).isidentifier()
267
+ return contain_invalid_identifier
268
+
269
+ def _format_dict(input_dict, outest_level=False):
270
+ r = ""
271
+ s = []
272
+
273
+ use_mapping = _contain_invalid_identifier(input_dict)
274
+ if use_mapping:
275
+ r += "{"
276
+ for idx, (k, v) in enumerate(input_dict.items()):
277
+ is_last = idx >= len(input_dict) - 1
278
+ end = "" if outest_level or is_last else ","
279
+ if isinstance(v, dict):
280
+ v_str = "\n" + _format_dict(v)
281
+ if use_mapping:
282
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
283
+ attr_str = f"{k_str}: dict({v_str}"
284
+ else:
285
+ attr_str = f"{str(k)}=dict({v_str}"
286
+ attr_str = _indent(attr_str, indent) + ")" + end
287
+ elif isinstance(v, list):
288
+ attr_str = _format_list(k, v, use_mapping) + end
289
+ else:
290
+ attr_str = _format_basic_types(k, v, use_mapping) + end
291
+
292
+ s.append(attr_str)
293
+ r += "\n".join(s)
294
+ if use_mapping:
295
+ r += "}"
296
+ return r
297
+
298
+ cfg_dict = self._cfg_dict.to_dict()
299
+ text = _format_dict(cfg_dict, outest_level=True)
300
+ # copied from setup.cfg
301
+ yapf_style = dict(
302
+ based_on_style="pep8",
303
+ blank_line_before_nested_class_or_def=True,
304
+ split_before_expression_after_opening_paren=True,
305
+ )
306
+ text, _ = FormatCode(text, style_config=yapf_style, verify=True)
307
+
308
+ return text
309
+
310
+ def __repr__(self):
311
+ return f"Config (path: {self.filename}): {self._cfg_dict.__repr__()}"
312
+
313
+ def __len__(self):
314
+ return len(self._cfg_dict)
315
+
316
+ def __getattr__(self, name):
317
+ # # debug
318
+ # print('+'*15)
319
+ # print('name=%s' % name)
320
+ # print("addr:", id(self))
321
+ # # print('type(self):', type(self))
322
+ # print(self.__dict__)
323
+ # print('+'*15)
324
+ # if self.__dict__ == {}:
325
+ # raise ValueError
326
+
327
+ return getattr(self._cfg_dict, name)
328
+
329
+ def __getitem__(self, name):
330
+ return self._cfg_dict.__getitem__(name)
331
+
332
+ def __setattr__(self, name, value):
333
+ if isinstance(value, dict):
334
+ value = ConfigDict(value)
335
+ self._cfg_dict.__setattr__(name, value)
336
+
337
+ def __setitem__(self, name, value):
338
+ if isinstance(value, dict):
339
+ value = ConfigDict(value)
340
+ self._cfg_dict.__setitem__(name, value)
341
+
342
+ def __iter__(self):
343
+ return iter(self._cfg_dict)
344
+
345
+ def dump(self, file=None):
346
+ # import ipdb; ipdb.set_trace()
347
+ if file is None:
348
+ return self.pretty_text
349
+ else:
350
+ with open(file, "w") as f:
351
+ f.write(self.pretty_text)
352
+
353
+ def merge_from_dict(self, options):
354
+ """Merge list into cfg_dict
355
+
356
+ Merge the dict parsed by MultipleKVAction into this cfg.
357
+
358
+ Examples:
359
+ >>> options = {'model.backbone.depth': 50,
360
+ ... 'model.backbone.with_cp':True}
361
+ >>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
362
+ >>> cfg.merge_from_dict(options)
363
+ >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
364
+ >>> assert cfg_dict == dict(
365
+ ... model=dict(backbone=dict(depth=50, with_cp=True)))
366
+
367
+ Args:
368
+ options (dict): dict of configs to merge from.
369
+ """
370
+ option_cfg_dict = {}
371
+ for full_key, v in options.items():
372
+ d = option_cfg_dict
373
+ key_list = full_key.split(".")
374
+ for subkey in key_list[:-1]:
375
+ d.setdefault(subkey, ConfigDict())
376
+ d = d[subkey]
377
+ subkey = key_list[-1]
378
+ d[subkey] = v
379
+
380
+ cfg_dict = super(SLConfig, self).__getattribute__("_cfg_dict")
381
+ super(SLConfig, self).__setattr__(
382
+ "_cfg_dict", SLConfig._merge_a_into_b(option_cfg_dict, cfg_dict)
383
+ )
384
+
385
+ # for multiprocess
386
+ def __setstate__(self, state):
387
+ self.__init__(state)
388
+
389
+ def copy(self):
390
+ return SLConfig(self._cfg_dict.copy())
391
+
392
+ def deepcopy(self):
393
+ return SLConfig(self._cfg_dict.deepcopy())
394
+
395
+
396
+ class DictAction(Action):
397
+ """
398
+ argparse action to split an argument into KEY=VALUE form
399
+ on the first = and append to a dictionary. List options should
400
+ be passed as comma separated values, i.e KEY=V1,V2,V3
401
+ """
402
+
403
+ @staticmethod
404
+ def _parse_int_float_bool(val):
405
+ try:
406
+ return int(val)
407
+ except ValueError:
408
+ pass
409
+ try:
410
+ return float(val)
411
+ except ValueError:
412
+ pass
413
+ if val.lower() in ["true", "false"]:
414
+ return True if val.lower() == "true" else False
415
+ if val.lower() in ["none", "null"]:
416
+ return None
417
+ return val
418
+
419
+ def __call__(self, parser, namespace, values, option_string=None):
420
+ options = {}
421
+ for kv in values:
422
+ key, val = kv.split("=", maxsplit=1)
423
+ val = [self._parse_int_float_bool(v) for v in val.split(",")]
424
+ if len(val) == 1:
425
+ val = val[0]
426
+ options[key] = val
427
+ setattr(namespace, self.dest, options)
groundingdino/util/slio.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ==========================================================
2
+ # Modified from mmcv
3
+ # ==========================================================
4
+
5
+ import json
6
+ import pickle
7
+ from abc import ABCMeta, abstractmethod
8
+ from pathlib import Path
9
+
10
+ import yaml
11
+
12
+ try:
13
+ from yaml import CLoader as Loader, CDumper as Dumper
14
+ except ImportError:
15
+ from yaml import Loader, Dumper
16
+
17
+
18
+ # ===========================
19
+ # Rigister handler
20
+ # ===========================
21
+
22
+
23
+ class BaseFileHandler(metaclass=ABCMeta):
24
+ @abstractmethod
25
+ def load_from_fileobj(self, file, **kwargs):
26
+ pass
27
+
28
+ @abstractmethod
29
+ def dump_to_fileobj(self, obj, file, **kwargs):
30
+ pass
31
+
32
+ @abstractmethod
33
+ def dump_to_str(self, obj, **kwargs):
34
+ pass
35
+
36
+ def load_from_path(self, filepath, mode="r", **kwargs):
37
+ with open(filepath, mode) as f:
38
+ return self.load_from_fileobj(f, **kwargs)
39
+
40
+ def dump_to_path(self, obj, filepath, mode="w", **kwargs):
41
+ with open(filepath, mode) as f:
42
+ self.dump_to_fileobj(obj, f, **kwargs)
43
+
44
+
45
+ class JsonHandler(BaseFileHandler):
46
+ def load_from_fileobj(self, file):
47
+ return json.load(file)
48
+
49
+ def dump_to_fileobj(self, obj, file, **kwargs):
50
+ json.dump(obj, file, **kwargs)
51
+
52
+ def dump_to_str(self, obj, **kwargs):
53
+ return json.dumps(obj, **kwargs)
54
+
55
+
56
+ class PickleHandler(BaseFileHandler):
57
+ def load_from_fileobj(self, file, **kwargs):
58
+ return pickle.load(file, **kwargs)
59
+
60
+ def load_from_path(self, filepath, **kwargs):
61
+ return super(PickleHandler, self).load_from_path(filepath, mode="rb", **kwargs)
62
+
63
+ def dump_to_str(self, obj, **kwargs):
64
+ kwargs.setdefault("protocol", 2)
65
+ return pickle.dumps(obj, **kwargs)
66
+
67
+ def dump_to_fileobj(self, obj, file, **kwargs):
68
+ kwargs.setdefault("protocol", 2)
69
+ pickle.dump(obj, file, **kwargs)
70
+
71
+ def dump_to_path(self, obj, filepath, **kwargs):
72
+ super(PickleHandler, self).dump_to_path(obj, filepath, mode="wb", **kwargs)
73
+
74
+
75
+ class YamlHandler(BaseFileHandler):
76
+ def load_from_fileobj(self, file, **kwargs):
77
+ kwargs.setdefault("Loader", Loader)
78
+ return yaml.load(file, **kwargs)
79
+
80
+ def dump_to_fileobj(self, obj, file, **kwargs):
81
+ kwargs.setdefault("Dumper", Dumper)
82
+ yaml.dump(obj, file, **kwargs)
83
+
84
+ def dump_to_str(self, obj, **kwargs):
85
+ kwargs.setdefault("Dumper", Dumper)
86
+ return yaml.dump(obj, **kwargs)
87
+
88
+
89
+ file_handlers = {
90
+ "json": JsonHandler(),
91
+ "yaml": YamlHandler(),
92
+ "yml": YamlHandler(),
93
+ "pickle": PickleHandler(),
94
+ "pkl": PickleHandler(),
95
+ }
96
+
97
+ # ===========================
98
+ # load and dump
99
+ # ===========================
100
+
101
+
102
+ def is_str(x):
103
+ """Whether the input is an string instance.
104
+
105
+ Note: This method is deprecated since python 2 is no longer supported.
106
+ """
107
+ return isinstance(x, str)
108
+
109
+
110
+ def slload(file, file_format=None, **kwargs):
111
+ """Load data from json/yaml/pickle files.
112
+
113
+ This method provides a unified api for loading data from serialized files.
114
+
115
+ Args:
116
+ file (str or :obj:`Path` or file-like object): Filename or a file-like
117
+ object.
118
+ file_format (str, optional): If not specified, the file format will be
119
+ inferred from the file extension, otherwise use the specified one.
120
+ Currently supported formats include "json", "yaml/yml" and
121
+ "pickle/pkl".
122
+
123
+ Returns:
124
+ The content from the file.
125
+ """
126
+ if isinstance(file, Path):
127
+ file = str(file)
128
+ if file_format is None and is_str(file):
129
+ file_format = file.split(".")[-1]
130
+ if file_format not in file_handlers:
131
+ raise TypeError(f"Unsupported format: {file_format}")
132
+
133
+ handler = file_handlers[file_format]
134
+ if is_str(file):
135
+ obj = handler.load_from_path(file, **kwargs)
136
+ elif hasattr(file, "read"):
137
+ obj = handler.load_from_fileobj(file, **kwargs)
138
+ else:
139
+ raise TypeError('"file" must be a filepath str or a file-object')
140
+ return obj
141
+
142
+
143
+ def sldump(obj, file=None, file_format=None, **kwargs):
144
+ """Dump data to json/yaml/pickle strings or files.
145
+
146
+ This method provides a unified api for dumping data as strings or to files,
147
+ and also supports custom arguments for each file format.
148
+
149
+ Args:
150
+ obj (any): The python object to be dumped.
151
+ file (str or :obj:`Path` or file-like object, optional): If not
152
+ specified, then the object is dump to a str, otherwise to a file
153
+ specified by the filename or file-like object.
154
+ file_format (str, optional): Same as :func:`load`.
155
+
156
+ Returns:
157
+ bool: True for success, False otherwise.
158
+ """
159
+ if isinstance(file, Path):
160
+ file = str(file)
161
+ if file_format is None:
162
+ if is_str(file):
163
+ file_format = file.split(".")[-1]
164
+ elif file is None:
165
+ raise ValueError("file_format must be specified since file is None")
166
+ if file_format not in file_handlers:
167
+ raise TypeError(f"Unsupported format: {file_format}")
168
+
169
+ handler = file_handlers[file_format]
170
+ if file is None:
171
+ return handler.dump_to_str(obj, **kwargs)
172
+ elif is_str(file):
173
+ handler.dump_to_path(obj, file, **kwargs)
174
+ elif hasattr(file, "write"):
175
+ handler.dump_to_fileobj(obj, file, **kwargs)
176
+ else:
177
+ raise TypeError('"file" must be a filename str or a file-object')
groundingdino/util/time_counter.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import time
3
+
4
+
5
+ class TimeCounter:
6
+ def __init__(self) -> None:
7
+ pass
8
+
9
+ def clear(self):
10
+ self.timedict = {}
11
+ self.basetime = time.perf_counter()
12
+
13
+ def timeit(self, name):
14
+ nowtime = time.perf_counter() - self.basetime
15
+ self.timedict[name] = nowtime
16
+ self.basetime = time.perf_counter()
17
+
18
+
19
+ class TimeHolder:
20
+ def __init__(self) -> None:
21
+ self.timedict = {}
22
+
23
+ def update(self, _timedict: dict):
24
+ for k, v in _timedict.items():
25
+ if k not in self.timedict:
26
+ self.timedict[k] = AverageMeter(name=k, val_only=True)
27
+ self.timedict[k].update(val=v)
28
+
29
+ def final_res(self):
30
+ return {k: v.avg for k, v in self.timedict.items()}
31
+
32
+ def __str__(self):
33
+ return json.dumps(self.final_res(), indent=2)
34
+
35
+
36
+ class AverageMeter(object):
37
+ """Computes and stores the average and current value"""
38
+
39
+ def __init__(self, name, fmt=":f", val_only=False):
40
+ self.name = name
41
+ self.fmt = fmt
42
+ self.val_only = val_only
43
+ self.reset()
44
+
45
+ def reset(self):
46
+ self.val = 0
47
+ self.avg = 0
48
+ self.sum = 0
49
+ self.count = 0
50
+
51
+ def update(self, val, n=1):
52
+ self.val = val
53
+ self.sum += val * n
54
+ self.count += n
55
+ self.avg = self.sum / self.count
56
+
57
+ def __str__(self):
58
+ if self.val_only:
59
+ fmtstr = "{name} {val" + self.fmt + "}"
60
+ else:
61
+ fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
62
+ return fmtstr.format(**self.__dict__)
groundingdino/util/utils.py ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import warnings
4
+ from collections import OrderedDict
5
+ from copy import deepcopy
6
+ from typing import Any, Dict, List
7
+
8
+ import numpy as np
9
+ import torch
10
+ from transformers import AutoTokenizer
11
+
12
+ from groundingdino.util.slconfig import SLConfig
13
+
14
+
15
+ def slprint(x, name="x"):
16
+ if isinstance(x, (torch.Tensor, np.ndarray)):
17
+ print(f"{name}.shape:", x.shape)
18
+ elif isinstance(x, (tuple, list)):
19
+ print("type x:", type(x))
20
+ for i in range(min(10, len(x))):
21
+ slprint(x[i], f"{name}[{i}]")
22
+ elif isinstance(x, dict):
23
+ for k, v in x.items():
24
+ slprint(v, f"{name}[{k}]")
25
+ else:
26
+ print(f"{name}.type:", type(x))
27
+
28
+
29
+ def clean_state_dict(state_dict):
30
+ new_state_dict = OrderedDict()
31
+ for k, v in state_dict.items():
32
+ if k[:7] == "module.":
33
+ k = k[7:] # remove `module.`
34
+ new_state_dict[k] = v
35
+ return new_state_dict
36
+
37
+
38
+ def renorm(
39
+ img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
40
+ ) -> torch.FloatTensor:
41
+ # img: tensor(3,H,W) or tensor(B,3,H,W)
42
+ # return: same as img
43
+ assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
44
+ if img.dim() == 3:
45
+ assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
46
+ img.size(0),
47
+ str(img.size()),
48
+ )
49
+ img_perm = img.permute(1, 2, 0)
50
+ mean = torch.Tensor(mean)
51
+ std = torch.Tensor(std)
52
+ img_res = img_perm * std + mean
53
+ return img_res.permute(2, 0, 1)
54
+ else: # img.dim() == 4
55
+ assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
56
+ img.size(1),
57
+ str(img.size()),
58
+ )
59
+ img_perm = img.permute(0, 2, 3, 1)
60
+ mean = torch.Tensor(mean)
61
+ std = torch.Tensor(std)
62
+ img_res = img_perm * std + mean
63
+ return img_res.permute(0, 3, 1, 2)
64
+
65
+
66
+ class CocoClassMapper:
67
+ def __init__(self) -> None:
68
+ self.category_map_str = {
69
+ "1": 1,
70
+ "2": 2,
71
+ "3": 3,
72
+ "4": 4,
73
+ "5": 5,
74
+ "6": 6,
75
+ "7": 7,
76
+ "8": 8,
77
+ "9": 9,
78
+ "10": 10,
79
+ "11": 11,
80
+ "13": 12,
81
+ "14": 13,
82
+ "15": 14,
83
+ "16": 15,
84
+ "17": 16,
85
+ "18": 17,
86
+ "19": 18,
87
+ "20": 19,
88
+ "21": 20,
89
+ "22": 21,
90
+ "23": 22,
91
+ "24": 23,
92
+ "25": 24,
93
+ "27": 25,
94
+ "28": 26,
95
+ "31": 27,
96
+ "32": 28,
97
+ "33": 29,
98
+ "34": 30,
99
+ "35": 31,
100
+ "36": 32,
101
+ "37": 33,
102
+ "38": 34,
103
+ "39": 35,
104
+ "40": 36,
105
+ "41": 37,
106
+ "42": 38,
107
+ "43": 39,
108
+ "44": 40,
109
+ "46": 41,
110
+ "47": 42,
111
+ "48": 43,
112
+ "49": 44,
113
+ "50": 45,
114
+ "51": 46,
115
+ "52": 47,
116
+ "53": 48,
117
+ "54": 49,
118
+ "55": 50,
119
+ "56": 51,
120
+ "57": 52,
121
+ "58": 53,
122
+ "59": 54,
123
+ "60": 55,
124
+ "61": 56,
125
+ "62": 57,
126
+ "63": 58,
127
+ "64": 59,
128
+ "65": 60,
129
+ "67": 61,
130
+ "70": 62,
131
+ "72": 63,
132
+ "73": 64,
133
+ "74": 65,
134
+ "75": 66,
135
+ "76": 67,
136
+ "77": 68,
137
+ "78": 69,
138
+ "79": 70,
139
+ "80": 71,
140
+ "81": 72,
141
+ "82": 73,
142
+ "84": 74,
143
+ "85": 75,
144
+ "86": 76,
145
+ "87": 77,
146
+ "88": 78,
147
+ "89": 79,
148
+ "90": 80,
149
+ }
150
+ self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
151
+ self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}
152
+
153
+ def origin2compact(self, idx):
154
+ return self.origin2compact_mapper[int(idx)]
155
+
156
+ def compact2origin(self, idx):
157
+ return self.compact2origin_mapper[int(idx)]
158
+
159
+
160
+ def to_device(item, device):
161
+ if isinstance(item, torch.Tensor):
162
+ return item.to(device)
163
+ elif isinstance(item, list):
164
+ return [to_device(i, device) for i in item]
165
+ elif isinstance(item, dict):
166
+ return {k: to_device(v, device) for k, v in item.items()}
167
+ else:
168
+ raise NotImplementedError(
169
+ "Call Shilong if you use other containers! type: {}".format(type(item))
170
+ )
171
+
172
+
173
+ #
174
+ def get_gaussian_mean(x, axis, other_axis, softmax=True):
175
+ """
176
+
177
+ Args:
178
+ x (float): Input images(BxCxHxW)
179
+ axis (int): The index for weighted mean
180
+ other_axis (int): The other index
181
+
182
+ Returns: weighted index for axis, BxC
183
+
184
+ """
185
+ mat2line = torch.sum(x, axis=other_axis)
186
+ # mat2line = mat2line / mat2line.mean() * 10
187
+ if softmax:
188
+ u = torch.softmax(mat2line, axis=2)
189
+ else:
190
+ u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
191
+ size = x.shape[axis]
192
+ ind = torch.linspace(0, 1, size).to(x.device)
193
+ batch = x.shape[0]
194
+ channel = x.shape[1]
195
+ index = ind.repeat([batch, channel, 1])
196
+ mean_position = torch.sum(index * u, dim=2)
197
+ return mean_position
198
+
199
+
200
+ def get_expected_points_from_map(hm, softmax=True):
201
+ """get_gaussian_map_from_points
202
+ B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
203
+ softargmax function
204
+
205
+ Args:
206
+ hm (float): Input images(BxCxHxW)
207
+
208
+ Returns:
209
+ weighted index for axis, BxCx2. float between 0 and 1.
210
+
211
+ """
212
+ # hm = 10*hm
213
+ B, C, H, W = hm.shape
214
+ y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax) # B,C
215
+ x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax) # B,C
216
+ # return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
217
+ return torch.stack([x_mean, y_mean], dim=2)
218
+
219
+
220
+ # Positional encoding (section 5.1)
221
+ # borrow from nerf
222
+ class Embedder:
223
+ def __init__(self, **kwargs):
224
+ self.kwargs = kwargs
225
+ self.create_embedding_fn()
226
+
227
+ def create_embedding_fn(self):
228
+ embed_fns = []
229
+ d = self.kwargs["input_dims"]
230
+ out_dim = 0
231
+ if self.kwargs["include_input"]:
232
+ embed_fns.append(lambda x: x)
233
+ out_dim += d
234
+
235
+ max_freq = self.kwargs["max_freq_log2"]
236
+ N_freqs = self.kwargs["num_freqs"]
237
+
238
+ if self.kwargs["log_sampling"]:
239
+ freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
240
+ else:
241
+ freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)
242
+
243
+ for freq in freq_bands:
244
+ for p_fn in self.kwargs["periodic_fns"]:
245
+ embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
246
+ out_dim += d
247
+
248
+ self.embed_fns = embed_fns
249
+ self.out_dim = out_dim
250
+
251
+ def embed(self, inputs):
252
+ return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
253
+
254
+
255
+ def get_embedder(multires, i=0):
256
+ import torch.nn as nn
257
+
258
+ if i == -1:
259
+ return nn.Identity(), 3
260
+
261
+ embed_kwargs = {
262
+ "include_input": True,
263
+ "input_dims": 3,
264
+ "max_freq_log2": multires - 1,
265
+ "num_freqs": multires,
266
+ "log_sampling": True,
267
+ "periodic_fns": [torch.sin, torch.cos],
268
+ }
269
+
270
+ embedder_obj = Embedder(**embed_kwargs)
271
+ embed = lambda x, eo=embedder_obj: eo.embed(x)
272
+ return embed, embedder_obj.out_dim
273
+
274
+
275
+ class APOPMeter:
276
+ def __init__(self) -> None:
277
+ self.tp = 0
278
+ self.fp = 0
279
+ self.tn = 0
280
+ self.fn = 0
281
+
282
+ def update(self, pred, gt):
283
+ """
284
+ Input:
285
+ pred, gt: Tensor()
286
+ """
287
+ assert pred.shape == gt.shape
288
+ self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
289
+ self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
290
+ self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
291
+ self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()
292
+
293
+ def update_cm(self, tp, fp, tn, fn):
294
+ self.tp += tp
295
+ self.fp += fp
296
+ self.tn += tn
297
+ self.tn += fn
298
+
299
+
300
+ def inverse_sigmoid(x, eps=1e-5):
301
+ x = x.clamp(min=0, max=1)
302
+ x1 = x.clamp(min=eps)
303
+ x2 = (1 - x).clamp(min=eps)
304
+ return torch.log(x1 / x2)
305
+
306
+
307
+ def get_raw_dict(args):
308
+ """
309
+ return the dicf contained in args.
310
+
311
+ e.g:
312
+ >>> with open(path, 'w') as f:
313
+ json.dump(get_raw_dict(args), f, indent=2)
314
+ """
315
+ if isinstance(args, argparse.Namespace):
316
+ return vars(args)
317
+ elif isinstance(args, dict):
318
+ return args
319
+ elif isinstance(args, SLConfig):
320
+ return args._cfg_dict
321
+ else:
322
+ raise NotImplementedError("Unknown type {}".format(type(args)))
323
+
324
+
325
+ def stat_tensors(tensor):
326
+ assert tensor.dim() == 1
327
+ tensor_sm = tensor.softmax(0)
328
+ entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()
329
+
330
+ return {
331
+ "max": tensor.max(),
332
+ "min": tensor.min(),
333
+ "mean": tensor.mean(),
334
+ "var": tensor.var(),
335
+ "std": tensor.var() ** 0.5,
336
+ "entropy": entropy,
337
+ }
338
+
339
+
340
+ class NiceRepr:
341
+ """Inherit from this class and define ``__nice__`` to "nicely" print your
342
+ objects.
343
+
344
+ Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
345
+ Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
346
+ If the inheriting class has a ``__len__``, method then the default
347
+ ``__nice__`` method will return its length.
348
+
349
+ Example:
350
+ >>> class Foo(NiceRepr):
351
+ ... def __nice__(self):
352
+ ... return 'info'
353
+ >>> foo = Foo()
354
+ >>> assert str(foo) == '<Foo(info)>'
355
+ >>> assert repr(foo).startswith('<Foo(info) at ')
356
+
357
+ Example:
358
+ >>> class Bar(NiceRepr):
359
+ ... pass
360
+ >>> bar = Bar()
361
+ >>> import pytest
362
+ >>> with pytest.warns(None) as record:
363
+ >>> assert 'object at' in str(bar)
364
+ >>> assert 'object at' in repr(bar)
365
+
366
+ Example:
367
+ >>> class Baz(NiceRepr):
368
+ ... def __len__(self):
369
+ ... return 5
370
+ >>> baz = Baz()
371
+ >>> assert str(baz) == '<Baz(5)>'
372
+ """
373
+
374
+ def __nice__(self):
375
+ """str: a "nice" summary string describing this module"""
376
+ if hasattr(self, "__len__"):
377
+ # It is a common pattern for objects to use __len__ in __nice__
378
+ # As a convenience we define a default __nice__ for these objects
379
+ return str(len(self))
380
+ else:
381
+ # In all other cases force the subclass to overload __nice__
382
+ raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")
383
+
384
+ def __repr__(self):
385
+ """str: the string of the module"""
386
+ try:
387
+ nice = self.__nice__()
388
+ classname = self.__class__.__name__
389
+ return f"<{classname}({nice}) at {hex(id(self))}>"
390
+ except NotImplementedError as ex:
391
+ warnings.warn(str(ex), category=RuntimeWarning)
392
+ return object.__repr__(self)
393
+
394
+ def __str__(self):
395
+ """str: the string of the module"""
396
+ try:
397
+ classname = self.__class__.__name__
398
+ nice = self.__nice__()
399
+ return f"<{classname}({nice})>"
400
+ except NotImplementedError as ex:
401
+ warnings.warn(str(ex), category=RuntimeWarning)
402
+ return object.__repr__(self)
403
+
404
+
405
+ def ensure_rng(rng=None):
406
+ """Coerces input into a random number generator.
407
+
408
+ If the input is None, then a global random state is returned.
409
+
410
+ If the input is a numeric value, then that is used as a seed to construct a
411
+ random state. Otherwise the input is returned as-is.
412
+
413
+ Adapted from [1]_.
414
+
415
+ Args:
416
+ rng (int | numpy.random.RandomState | None):
417
+ if None, then defaults to the global rng. Otherwise this can be an
418
+ integer or a RandomState class
419
+ Returns:
420
+ (numpy.random.RandomState) : rng -
421
+ a numpy random number generator
422
+
423
+ References:
424
+ .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270 # noqa: E501
425
+ """
426
+
427
+ if rng is None:
428
+ rng = np.random.mtrand._rand
429
+ elif isinstance(rng, int):
430
+ rng = np.random.RandomState(rng)
431
+ else:
432
+ rng = rng
433
+ return rng
434
+
435
+
436
+ def random_boxes(num=1, scale=1, rng=None):
437
+ """Simple version of ``kwimage.Boxes.random``
438
+
439
+ Returns:
440
+ Tensor: shape (n, 4) in x1, y1, x2, y2 format.
441
+
442
+ References:
443
+ https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390
444
+
445
+ Example:
446
+ >>> num = 3
447
+ >>> scale = 512
448
+ >>> rng = 0
449
+ >>> boxes = random_boxes(num, scale, rng)
450
+ >>> print(boxes)
451
+ tensor([[280.9925, 278.9802, 308.6148, 366.1769],
452
+ [216.9113, 330.6978, 224.0446, 456.5878],
453
+ [405.3632, 196.3221, 493.3953, 270.7942]])
454
+ """
455
+ rng = ensure_rng(rng)
456
+
457
+ tlbr = rng.rand(num, 4).astype(np.float32)
458
+
459
+ tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
460
+ tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
461
+ br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
462
+ br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])
463
+
464
+ tlbr[:, 0] = tl_x * scale
465
+ tlbr[:, 1] = tl_y * scale
466
+ tlbr[:, 2] = br_x * scale
467
+ tlbr[:, 3] = br_y * scale
468
+
469
+ boxes = torch.from_numpy(tlbr)
470
+ return boxes
471
+
472
+
473
+ class ModelEma(torch.nn.Module):
474
+ def __init__(self, model, decay=0.9997, device=None):
475
+ super(ModelEma, self).__init__()
476
+ # make a copy of the model for accumulating moving average of weights
477
+ self.module = deepcopy(model)
478
+ self.module.eval()
479
+
480
+ # import ipdb; ipdb.set_trace()
481
+
482
+ self.decay = decay
483
+ self.device = device # perform ema on different device from model if set
484
+ if self.device is not None:
485
+ self.module.to(device=device)
486
+
487
+ def _update(self, model, update_fn):
488
+ with torch.no_grad():
489
+ for ema_v, model_v in zip(
490
+ self.module.state_dict().values(), model.state_dict().values()
491
+ ):
492
+ if self.device is not None:
493
+ model_v = model_v.to(device=self.device)
494
+ ema_v.copy_(update_fn(ema_v, model_v))
495
+
496
+ def update(self, model):
497
+ self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)
498
+
499
+ def set(self, model):
500
+ self._update(model, update_fn=lambda e, m: m)
501
+
502
+
503
+ class BestMetricSingle:
504
+ def __init__(self, init_res=0.0, better="large") -> None:
505
+ self.init_res = init_res
506
+ self.best_res = init_res
507
+ self.best_ep = -1
508
+
509
+ self.better = better
510
+ assert better in ["large", "small"]
511
+
512
+ def isbetter(self, new_res, old_res):
513
+ if self.better == "large":
514
+ return new_res > old_res
515
+ if self.better == "small":
516
+ return new_res < old_res
517
+
518
+ def update(self, new_res, ep):
519
+ if self.isbetter(new_res, self.best_res):
520
+ self.best_res = new_res
521
+ self.best_ep = ep
522
+ return True
523
+ return False
524
+
525
+ def __str__(self) -> str:
526
+ return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)
527
+
528
+ def __repr__(self) -> str:
529
+ return self.__str__()
530
+
531
+ def summary(self) -> dict:
532
+ return {
533
+ "best_res": self.best_res,
534
+ "best_ep": self.best_ep,
535
+ }
536
+
537
+
538
+ class BestMetricHolder:
539
+ def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
540
+ self.best_all = BestMetricSingle(init_res, better)
541
+ self.use_ema = use_ema
542
+ if use_ema:
543
+ self.best_ema = BestMetricSingle(init_res, better)
544
+ self.best_regular = BestMetricSingle(init_res, better)
545
+
546
+ def update(self, new_res, epoch, is_ema=False):
547
+ """
548
+ return if the results is the best.
549
+ """
550
+ if not self.use_ema:
551
+ return self.best_all.update(new_res, epoch)
552
+ else:
553
+ if is_ema:
554
+ self.best_ema.update(new_res, epoch)
555
+ return self.best_all.update(new_res, epoch)
556
+ else:
557
+ self.best_regular.update(new_res, epoch)
558
+ return self.best_all.update(new_res, epoch)
559
+
560
+ def summary(self):
561
+ if not self.use_ema:
562
+ return self.best_all.summary()
563
+
564
+ res = {}
565
+ res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
566
+ res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
567
+ res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
568
+ return res
569
+
570
+ def __repr__(self) -> str:
571
+ return json.dumps(self.summary(), indent=2)
572
+
573
+ def __str__(self) -> str:
574
+ return self.__repr__()
575
+
576
+
577
+ def targets_to(targets: List[Dict[str, Any]], device):
578
+ """Moves the target dicts to the given device."""
579
+ excluded_keys = [
580
+ "questionId",
581
+ "tokens_positive",
582
+ "strings_positive",
583
+ "tokens",
584
+ "dataset_name",
585
+ "sentence_id",
586
+ "original_img_id",
587
+ "nb_eval",
588
+ "task_id",
589
+ "original_id",
590
+ "token_span",
591
+ "caption",
592
+ "dataset_type",
593
+ ]
594
+ return [
595
+ {k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets
596
+ ]
597
+
598
+
599
+ def get_phrases_from_posmap(
600
+ posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer, left_idx: int = 0, right_idx: int = 255
601
+ ):
602
+ assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
603
+ if posmap.dim() == 1:
604
+ posmap[0: left_idx + 1] = False
605
+ posmap[right_idx:] = False
606
+ non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
607
+ token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
608
+ return tokenizer.decode(token_ids)
609
+ else:
610
+ raise NotImplementedError("posmap must be 1-dim")
groundingdino/util/visualizer.py ADDED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """
3
+ @File : visualizer.py
4
+ @Time : 2022/04/05 11:39:33
5
+ @Author : Shilong Liu
6
+ @Contact : slongliu86@gmail.com
7
+ """
8
+
9
+ import datetime
10
+ import os
11
+
12
+ import cv2
13
+ import matplotlib.pyplot as plt
14
+ import numpy as np
15
+ import torch
16
+ from matplotlib import transforms
17
+ from matplotlib.collections import PatchCollection
18
+ from matplotlib.patches import Polygon
19
+ from pycocotools import mask as maskUtils
20
+
21
+
22
+ def renorm(
23
+ img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
24
+ ) -> torch.FloatTensor:
25
+ # img: tensor(3,H,W) or tensor(B,3,H,W)
26
+ # return: same as img
27
+ assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
28
+ if img.dim() == 3:
29
+ assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
30
+ img.size(0),
31
+ str(img.size()),
32
+ )
33
+ img_perm = img.permute(1, 2, 0)
34
+ mean = torch.Tensor(mean)
35
+ std = torch.Tensor(std)
36
+ img_res = img_perm * std + mean
37
+ return img_res.permute(2, 0, 1)
38
+ else: # img.dim() == 4
39
+ assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
40
+ img.size(1),
41
+ str(img.size()),
42
+ )
43
+ img_perm = img.permute(0, 2, 3, 1)
44
+ mean = torch.Tensor(mean)
45
+ std = torch.Tensor(std)
46
+ img_res = img_perm * std + mean
47
+ return img_res.permute(0, 3, 1, 2)
48
+
49
+
50
+ class ColorMap:
51
+ def __init__(self, basergb=[255, 255, 0]):
52
+ self.basergb = np.array(basergb)
53
+
54
+ def __call__(self, attnmap):
55
+ # attnmap: h, w. np.uint8.
56
+ # return: h, w, 4. np.uint8.
57
+ assert attnmap.dtype == np.uint8
58
+ h, w = attnmap.shape
59
+ res = self.basergb.copy()
60
+ res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3
61
+ attn1 = attnmap.copy()[..., None] # h, w, 1
62
+ res = np.concatenate((res, attn1), axis=-1).astype(np.uint8)
63
+ return res
64
+
65
+
66
+ def rainbow_text(x, y, ls, lc, **kw):
67
+ """
68
+ Take a list of strings ``ls`` and colors ``lc`` and place them next to each
69
+ other, with text ls[i] being shown in color lc[i].
70
+
71
+ This example shows how to do both vertical and horizontal text, and will
72
+ pass all keyword arguments to plt.text, so you can set the font size,
73
+ family, etc.
74
+ """
75
+ t = plt.gca().transData
76
+ fig = plt.gcf()
77
+ plt.show()
78
+
79
+ # horizontal version
80
+ for s, c in zip(ls, lc):
81
+ text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw)
82
+ text.draw(fig.canvas.get_renderer())
83
+ ex = text.get_window_extent()
84
+ t = transforms.offset_copy(text._transform, x=ex.width, units="dots")
85
+
86
+ # #vertical version
87
+ # for s,c in zip(ls,lc):
88
+ # text = plt.text(x,y," "+s+" ",color=c, transform=t,
89
+ # rotation=90,va='bottom',ha='center',**kw)
90
+ # text.draw(fig.canvas.get_renderer())
91
+ # ex = text.get_window_extent()
92
+ # t = transforms.offset_copy(text._transform, y=ex.height, units='dots')
93
+
94
+
95
+ class COCOVisualizer:
96
+ def __init__(self, coco=None, tokenlizer=None) -> None:
97
+ self.coco = coco
98
+
99
+ def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"):
100
+ """
101
+ img: tensor(3, H, W)
102
+ tgt: make sure they are all on cpu.
103
+ must have items: 'image_id', 'boxes', 'size'
104
+ """
105
+ plt.figure(dpi=dpi)
106
+ plt.rcParams["font.size"] = "5"
107
+ ax = plt.gca()
108
+ img = renorm(img).permute(1, 2, 0)
109
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
110
+ # import ipdb; ipdb.set_trace()
111
+ ax.imshow(img)
112
+
113
+ self.addtgt(tgt)
114
+
115
+ if tgt is None:
116
+ image_id = 0
117
+ elif "image_id" not in tgt:
118
+ image_id = 0
119
+ else:
120
+ image_id = tgt["image_id"]
121
+
122
+ if caption is None:
123
+ savename = "{}/{}-{}.png".format(
124
+ savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
125
+ )
126
+ else:
127
+ savename = "{}/{}-{}-{}.png".format(
128
+ savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
129
+ )
130
+ print("savename: {}".format(savename))
131
+ os.makedirs(os.path.dirname(savename), exist_ok=True)
132
+ plt.savefig(savename)
133
+ plt.close()
134
+
135
+ def addtgt(self, tgt):
136
+ """ """
137
+ if tgt is None or not "boxes" in tgt:
138
+ ax = plt.gca()
139
+
140
+ if "caption" in tgt:
141
+ ax.set_title(tgt["caption"], wrap=True)
142
+
143
+ ax.set_axis_off()
144
+ return
145
+
146
+ ax = plt.gca()
147
+ H, W = tgt["size"]
148
+ numbox = tgt["boxes"].shape[0]
149
+
150
+ color = []
151
+ polygons = []
152
+ boxes = []
153
+ for box in tgt["boxes"].cpu():
154
+ unnormbbox = box * torch.Tensor([W, H, W, H])
155
+ unnormbbox[:2] -= unnormbbox[2:] / 2
156
+ [bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
157
+ boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
158
+ poly = [
159
+ [bbox_x, bbox_y],
160
+ [bbox_x, bbox_y + bbox_h],
161
+ [bbox_x + bbox_w, bbox_y + bbox_h],
162
+ [bbox_x + bbox_w, bbox_y],
163
+ ]
164
+ np_poly = np.array(poly).reshape((4, 2))
165
+ polygons.append(Polygon(np_poly))
166
+ c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
167
+ color.append(c)
168
+
169
+ p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
170
+ ax.add_collection(p)
171
+ p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
172
+ ax.add_collection(p)
173
+
174
+ if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0:
175
+ assert (
176
+ len(tgt["strings_positive"]) == numbox
177
+ ), f"{len(tgt['strings_positive'])} = {numbox}, "
178
+ for idx, strlist in enumerate(tgt["strings_positive"]):
179
+ cate_id = int(tgt["labels"][idx])
180
+ _string = str(cate_id) + ":" + " ".join(strlist)
181
+ bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
182
+ # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
183
+ ax.text(
184
+ bbox_x,
185
+ bbox_y,
186
+ _string,
187
+ color="black",
188
+ bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
189
+ )
190
+
191
+ if "box_label" in tgt:
192
+ assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, "
193
+ for idx, bl in enumerate(tgt["box_label"]):
194
+ _string = str(bl)
195
+ bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
196
+ # ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
197
+ ax.text(
198
+ bbox_x,
199
+ bbox_y,
200
+ _string,
201
+ color="black",
202
+ bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
203
+ )
204
+
205
+ if "caption" in tgt:
206
+ ax.set_title(tgt["caption"], wrap=True)
207
+ # plt.figure()
208
+ # rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(),
209
+ # ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black'])
210
+
211
+ if "attn" in tgt:
212
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
213
+ # import ipdb; ipdb.set_trace()
214
+ if isinstance(tgt["attn"], tuple):
215
+ tgt["attn"] = [tgt["attn"]]
216
+ for item in tgt["attn"]:
217
+ attn_map, basergb = item
218
+ attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3)
219
+ attn_map = (attn_map * 255).astype(np.uint8)
220
+ cm = ColorMap(basergb)
221
+ heatmap = cm(attn_map)
222
+ ax.imshow(heatmap)
223
+ ax.set_axis_off()
224
+
225
+ def showAnns(self, anns, draw_bbox=False):
226
+ """
227
+ Display the specified annotations.
228
+ :param anns (array of object): annotations to display
229
+ :return: None
230
+ """
231
+ if len(anns) == 0:
232
+ return 0
233
+ if "segmentation" in anns[0] or "keypoints" in anns[0]:
234
+ datasetType = "instances"
235
+ elif "caption" in anns[0]:
236
+ datasetType = "captions"
237
+ else:
238
+ raise Exception("datasetType not supported")
239
+ if datasetType == "instances":
240
+ ax = plt.gca()
241
+ ax.set_autoscale_on(False)
242
+ polygons = []
243
+ color = []
244
+ for ann in anns:
245
+ c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
246
+ if "segmentation" in ann:
247
+ if type(ann["segmentation"]) == list:
248
+ # polygon
249
+ for seg in ann["segmentation"]:
250
+ poly = np.array(seg).reshape((int(len(seg) / 2), 2))
251
+ polygons.append(Polygon(poly))
252
+ color.append(c)
253
+ else:
254
+ # mask
255
+ t = self.imgs[ann["image_id"]]
256
+ if type(ann["segmentation"]["counts"]) == list:
257
+ rle = maskUtils.frPyObjects(
258
+ [ann["segmentation"]], t["height"], t["width"]
259
+ )
260
+ else:
261
+ rle = [ann["segmentation"]]
262
+ m = maskUtils.decode(rle)
263
+ img = np.ones((m.shape[0], m.shape[1], 3))
264
+ if ann["iscrowd"] == 1:
265
+ color_mask = np.array([2.0, 166.0, 101.0]) / 255
266
+ if ann["iscrowd"] == 0:
267
+ color_mask = np.random.random((1, 3)).tolist()[0]
268
+ for i in range(3):
269
+ img[:, :, i] = color_mask[i]
270
+ ax.imshow(np.dstack((img, m * 0.5)))
271
+ if "keypoints" in ann and type(ann["keypoints"]) == list:
272
+ # turn skeleton into zero-based index
273
+ sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
274
+ kp = np.array(ann["keypoints"])
275
+ x = kp[0::3]
276
+ y = kp[1::3]
277
+ v = kp[2::3]
278
+ for sk in sks:
279
+ if np.all(v[sk] > 0):
280
+ plt.plot(x[sk], y[sk], linewidth=3, color=c)
281
+ plt.plot(
282
+ x[v > 0],
283
+ y[v > 0],
284
+ "o",
285
+ markersize=8,
286
+ markerfacecolor=c,
287
+ markeredgecolor="k",
288
+ markeredgewidth=2,
289
+ )
290
+ plt.plot(
291
+ x[v > 1],
292
+ y[v > 1],
293
+ "o",
294
+ markersize=8,
295
+ markerfacecolor=c,
296
+ markeredgecolor=c,
297
+ markeredgewidth=2,
298
+ )
299
+
300
+ if draw_bbox:
301
+ [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
302
+ poly = [
303
+ [bbox_x, bbox_y],
304
+ [bbox_x, bbox_y + bbox_h],
305
+ [bbox_x + bbox_w, bbox_y + bbox_h],
306
+ [bbox_x + bbox_w, bbox_y],
307
+ ]
308
+ np_poly = np.array(poly).reshape((4, 2))
309
+ polygons.append(Polygon(np_poly))
310
+ color.append(c)
311
+
312
+ # p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
313
+ # ax.add_collection(p)
314
+ p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
315
+ ax.add_collection(p)
316
+ elif datasetType == "captions":
317
+ for ann in anns:
318
+ print(ann["caption"])
groundingdino/util/vl_utils.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ from typing import List
4
+
5
+ import torch
6
+
7
+
8
+ def create_positive_map_from_span(tokenized, token_span, max_text_len=256):
9
+ """construct a map such that positive_map[i,j] = True iff box i is associated to token j
10
+ Input:
11
+ - tokenized:
12
+ - input_ids: Tensor[1, ntokens]
13
+ - attention_mask: Tensor[1, ntokens]
14
+ - token_span: list with length num_boxes.
15
+ - each item: [start_idx, end_idx]
16
+ """
17
+ positive_map = torch.zeros((len(token_span), max_text_len), dtype=torch.float)
18
+ for j, tok_list in enumerate(token_span):
19
+ for (beg, end) in tok_list:
20
+ beg_pos = tokenized.char_to_token(beg)
21
+ end_pos = tokenized.char_to_token(end - 1)
22
+ if beg_pos is None:
23
+ try:
24
+ beg_pos = tokenized.char_to_token(beg + 1)
25
+ if beg_pos is None:
26
+ beg_pos = tokenized.char_to_token(beg + 2)
27
+ except:
28
+ beg_pos = None
29
+ if end_pos is None:
30
+ try:
31
+ end_pos = tokenized.char_to_token(end - 2)
32
+ if end_pos is None:
33
+ end_pos = tokenized.char_to_token(end - 3)
34
+ except:
35
+ end_pos = None
36
+ if beg_pos is None or end_pos is None:
37
+ continue
38
+
39
+ assert beg_pos is not None and end_pos is not None
40
+ if os.environ.get("SHILONG_DEBUG_ONLY_ONE_POS", None) == "TRUE":
41
+ positive_map[j, beg_pos] = 1
42
+ break
43
+ else:
44
+ positive_map[j, beg_pos : end_pos + 1].fill_(1)
45
+
46
+ return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
47
+
48
+
49
+ def build_captions_and_token_span(cat_list, force_lowercase):
50
+ """
51
+ Return:
52
+ captions: str
53
+ cat2tokenspan: dict
54
+ {
55
+ 'dog': [[0, 2]],
56
+ ...
57
+ }
58
+ """
59
+
60
+ cat2tokenspan = {}
61
+ captions = ""
62
+ for catname in cat_list:
63
+ class_name = catname
64
+ if force_lowercase:
65
+ class_name = class_name.lower()
66
+ if "/" in class_name:
67
+ class_name_list: List = class_name.strip().split("/")
68
+ class_name_list.append(class_name)
69
+ class_name: str = random.choice(class_name_list)
70
+
71
+ tokens_positive_i = []
72
+ subnamelist = [i.strip() for i in class_name.strip().split(" ")]
73
+ for subname in subnamelist:
74
+ if len(subname) == 0:
75
+ continue
76
+ if len(captions) > 0:
77
+ captions = captions + " "
78
+ strat_idx = len(captions)
79
+ end_idx = strat_idx + len(subname)
80
+ tokens_positive_i.append([strat_idx, end_idx])
81
+ captions = captions + subname
82
+
83
+ if len(tokens_positive_i) > 0:
84
+ captions = captions + " ."
85
+ cat2tokenspan[class_name] = tokens_positive_i
86
+
87
+ return captions, cat2tokenspan
88
+
89
+
90
+ def build_id2posspan_and_caption(category_dict: dict):
91
+ """Build id2pos_span and caption from category_dict
92
+
93
+ Args:
94
+ category_dict (dict): category_dict
95
+ """
96
+ cat_list = [item["name"].lower() for item in category_dict]
97
+ id2catname = {item["id"]: item["name"].lower() for item in category_dict}
98
+ caption, cat2posspan = build_captions_and_token_span(cat_list, force_lowercase=True)
99
+ id2posspan = {catid: cat2posspan[catname] for catid, catname in id2catname.items()}
100
+ return id2posspan, caption
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Cython
2
+ torch==2.0.1
3
+ torchvision
4
+ transformers
5
+ addict
6
+ yapf
7
+ timm
8
+ numpy
9
+ opencv-python
10
+ supervision==0.3.2
11
+ pycocotools
12
+ packaging==21.3
setup.py ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The IDEA Authors. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ # ------------------------------------------------------------------------------------------------
16
+ # Modified from
17
+ # https://github.com/fundamentalvision/Deformable-DETR/blob/main/models/ops/setup.py
18
+ # https://github.com/facebookresearch/detectron2/blob/main/setup.py
19
+ # https://github.com/open-mmlab/mmdetection/blob/master/setup.py
20
+ # https://github.com/Oneflow-Inc/libai/blob/main/setup.py
21
+ # ------------------------------------------------------------------------------------------------
22
+
23
+ import glob
24
+ import os
25
+ import subprocess
26
+
27
+ import torch
28
+ from setuptools import find_packages, setup
29
+ from torch.utils.cpp_extension import CUDA_HOME, CppExtension, CUDAExtension
30
+
31
+ # groundingdino version info
32
+ version = "0.1.0"
33
+ package_name = "groundingdino"
34
+ cwd = os.path.dirname(os.path.abspath(__file__))
35
+
36
+
37
+ sha = "Unknown"
38
+ try:
39
+ sha = subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=cwd).decode("ascii").strip()
40
+ except Exception:
41
+ pass
42
+
43
+
44
+ def write_version_file():
45
+ version_path = os.path.join(cwd, "groundingdino", "version.py")
46
+ with open(version_path, "w") as f:
47
+ f.write(f"__version__ = '{version}'\n")
48
+ # f.write(f"git_version = {repr(sha)}\n")
49
+
50
+
51
+ requirements = ["torch", "torchvision"]
52
+
53
+ torch_ver = [int(x) for x in torch.__version__.split(".")[:2]]
54
+
55
+
56
+ def get_extensions():
57
+ this_dir = os.path.dirname(os.path.abspath(__file__))
58
+ extensions_dir = os.path.join(this_dir, "groundingdino", "models", "GroundingDINO", "csrc")
59
+
60
+ main_source = os.path.join(extensions_dir, "vision.cpp")
61
+ sources = glob.glob(os.path.join(extensions_dir, "**", "*.cpp"))
62
+ source_cuda = glob.glob(os.path.join(extensions_dir, "**", "*.cu")) + glob.glob(
63
+ os.path.join(extensions_dir, "*.cu")
64
+ )
65
+
66
+ sources = [main_source] + sources
67
+
68
+ extension = CppExtension
69
+
70
+ extra_compile_args = {"cxx": []}
71
+ define_macros = []
72
+
73
+ if torch.cuda.is_available() and CUDA_HOME is not None:
74
+ print("Compiling with CUDA")
75
+ extension = CUDAExtension
76
+ sources += source_cuda
77
+ define_macros += [("WITH_CUDA", None)]
78
+ extra_compile_args["nvcc"] = [
79
+ "-DCUDA_HAS_FP16=1",
80
+ "-D__CUDA_NO_HALF_OPERATORS__",
81
+ "-D__CUDA_NO_HALF_CONVERSIONS__",
82
+ "-D__CUDA_NO_HALF2_OPERATORS__",
83
+ ]
84
+ else:
85
+ print("Compiling without CUDA")
86
+ define_macros += [("WITH_HIP", None)]
87
+ extra_compile_args["nvcc"] = []
88
+ return None
89
+
90
+ sources = [os.path.join(extensions_dir, s) for s in sources]
91
+ include_dirs = [extensions_dir]
92
+
93
+ ext_modules = [
94
+ extension(
95
+ "groundingdino._C",
96
+ sources,
97
+ include_dirs=include_dirs,
98
+ define_macros=define_macros,
99
+ extra_compile_args=extra_compile_args,
100
+ )
101
+ ]
102
+
103
+ return ext_modules
104
+
105
+
106
+ def parse_requirements(fname="requirements.txt", with_version=True):
107
+ """Parse the package dependencies listed in a requirements file but strips
108
+ specific versioning information.
109
+
110
+ Args:
111
+ fname (str): path to requirements file
112
+ with_version (bool, default=False): if True include version specs
113
+
114
+ Returns:
115
+ List[str]: list of requirements items
116
+
117
+ CommandLine:
118
+ python -c "import setup; print(setup.parse_requirements())"
119
+ """
120
+ import re
121
+ import sys
122
+ from os.path import exists
123
+
124
+ require_fpath = fname
125
+
126
+ def parse_line(line):
127
+ """Parse information from a line in a requirements text file."""
128
+ if line.startswith("-r "):
129
+ # Allow specifying requirements in other files
130
+ target = line.split(" ")[1]
131
+ for info in parse_require_file(target):
132
+ yield info
133
+ else:
134
+ info = {"line": line}
135
+ if line.startswith("-e "):
136
+ info["package"] = line.split("#egg=")[1]
137
+ elif "@git+" in line:
138
+ info["package"] = line
139
+ else:
140
+ # Remove versioning from the package
141
+ pat = "(" + "|".join([">=", "==", ">"]) + ")"
142
+ parts = re.split(pat, line, maxsplit=1)
143
+ parts = [p.strip() for p in parts]
144
+
145
+ info["package"] = parts[0]
146
+ if len(parts) > 1:
147
+ op, rest = parts[1:]
148
+ if ";" in rest:
149
+ # Handle platform specific dependencies
150
+ # http://setuptools.readthedocs.io/en/latest/setuptools.html#declaring-platform-specific-dependencies
151
+ version, platform_deps = map(str.strip, rest.split(";"))
152
+ info["platform_deps"] = platform_deps
153
+ else:
154
+ version = rest # NOQA
155
+ info["version"] = (op, version)
156
+ yield info
157
+
158
+ def parse_require_file(fpath):
159
+ with open(fpath, "r") as f:
160
+ for line in f.readlines():
161
+ line = line.strip()
162
+ if line and not line.startswith("#"):
163
+ for info in parse_line(line):
164
+ yield info
165
+
166
+ def gen_packages_items():
167
+ if exists(require_fpath):
168
+ for info in parse_require_file(require_fpath):
169
+ parts = [info["package"]]
170
+ if with_version and "version" in info:
171
+ parts.extend(info["version"])
172
+ if not sys.version.startswith("3.4"):
173
+ # apparently package_deps are broken in 3.4
174
+ platform_deps = info.get("platform_deps")
175
+ if platform_deps is not None:
176
+ parts.append(";" + platform_deps)
177
+ item = "".join(parts)
178
+ yield item
179
+
180
+ packages = list(gen_packages_items())
181
+ return packages
182
+
183
+
184
+ if __name__ == "__main__":
185
+ print(f"Building wheel {package_name}-{version}")
186
+
187
+ with open("LICENSE", "r", encoding="utf-8") as f:
188
+ license = f.read()
189
+
190
+ write_version_file()
191
+
192
+ setup(
193
+ name="groundingdino",
194
+ version="0.1.0",
195
+ author="International Digital Economy Academy, Shilong Liu",
196
+ url="https://github.com/IDEA-Research/GroundingDINO",
197
+ description="open-set object detector",
198
+ license=license,
199
+ install_requires=parse_requirements("requirements.txt"),
200
+ packages=find_packages(
201
+ exclude=(
202
+ "configs",
203
+ "tests",
204
+ )
205
+ ),
206
+ ext_modules=get_extensions(),
207
+ cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
208
+ )