import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from transformers import pipeline import torch import base64 import textwrap from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma from langchain.llms.huggingface_pipeline import HuggingFacePipeline from langchain.chains import RetrievalQA from streamlit_chat import message from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import SentenceTransformerEmbeddings from langchain.vectorstores import Chroma import os st.set_page_config(page_title="pdf-GPT", page_icon="📖", layout="wide") @st.cache_resource def get_model(): device = torch.device('cpu') # device = torch.device('cuda:0') checkpoint = "LaMini-T5-738M" checkpoint = "MBZUAI/LaMini-T5-738M" tokenizer = AutoTokenizer.from_pretrained(checkpoint) base_model = AutoModelForSeq2SeqLM.from_pretrained( checkpoint, device_map=device, torch_dtype = torch.float32, # offload_folder= "/model_ck" ) return base_model,tokenizer @st.cache_resource def llm_pipeline(): base_model,tokenizer = get_model() pipe = pipeline( 'text2text-generation', model = base_model, tokenizer=tokenizer, max_length = 512, do_sample = True, temperature = 0.3, top_p = 0.95, # device=device ) local_llm = HuggingFacePipeline(pipeline = pipe) return local_llm @st.cache_resource def qa_llm(): llm = llm_pipeline() embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") db = Chroma(persist_directory="db", embedding_function = embeddings) retriever = db.as_retriever() qa = RetrievalQA.from_chain_type( llm=llm, chain_type = "stuff", retriever = retriever, return_source_documents=True ) return qa def process_answer(instruction): response='' instruction = instruction qa = qa_llm() generated_text = qa(instruction) answer = generated_text['result'] return answer, generated_text # Display conversation history using Streamlit messages def display_conversation(history): # st.write(history) for i in range(len(history["generated"])): message(history["past"][i] , is_user=True, key= str(i) + "_user") if isinstance(history["generated"][i],str): message(history["generated"][i] , key= str(i)) else: message(history["generated"][i][0] , key= str(i)) # sources_list = [] # for source in history["generated"][i][1]['source_documents']: # # st.write(source.metadata['source']) # sources_list.append(source.metadata['source']) # message(str(set(sources_list)) , key="sources_"+str(i)) # function to display the PDF of a given file @st.cache_data def displayPDF(file,file_name): # Opening file from file path with open(file, "rb") as f: base64_pdf = base64.b64encode(f.read()).decode('utf-8') # Embedding PDF in HTML pdf_display = f'' # pdf_display = f'' # st.write() # pdf_display = f'' # pdf_display = f'' # st.write(pdf_display) st.markdown(pdf_display, unsafe_allow_html=True) @st.cache_resource def data_ingestion(file_path,persist_directory): # for root, dirs, files in os.walk("docs"): # for file in files: if file_path.endswith(".pdf"): print(file_path) loader = PDFMinerLoader(file_path) documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500) texts = text_splitter.split_documents(documents) # create embeddings embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # create vector store db = Chroma.from_documents(texts, embeddings, persist_directory="uploaded/db") db.persist() db=None def main(): st.markdown("