Spaces:
Runtime error
Runtime error
Vision-CAIR
commited on
Commit
β’
9763171
1
Parent(s):
bf4036b
Upload 60 files
Browse files- eval_configs/minigpt4_eval.yaml +3 -6
- eval_configs/minigptv2_eval.yaml +1 -1
- minigpt4/common/dist_utils.py +4 -1
- minigpt4/configs/models/minigpt_v2.yaml +1 -1
- minigpt4/conversation/conversation.py +64 -22
- minigpt4/datasets/datasets/cc_sbu_dataset.py +2 -2
- minigpt4/datasets/datasets/laion_dataset.py +1 -1
- minigpt4/models/__init__.py +5 -3
- minigpt4/models/base_model.py +128 -127
- minigpt4/models/minigpt_base.py +3 -2
- minigpt4/models/modeling_llama.py +20 -664
- minigpt4/runners/runner_base.py +3 -3
eval_configs/minigpt4_eval.yaml
CHANGED
@@ -1,14 +1,11 @@
|
|
1 |
model:
|
2 |
-
arch:
|
3 |
-
model_type:
|
4 |
-
freeze_vit: True
|
5 |
-
freeze_qformer: True
|
6 |
max_txt_len: 160
|
7 |
end_sym: "###"
|
8 |
low_resource: True
|
9 |
-
prompt_path: "prompts/alignment.txt"
|
10 |
prompt_template: '###Human: {} ###Assistant: '
|
11 |
-
ckpt: '
|
12 |
|
13 |
|
14 |
datasets:
|
|
|
1 |
model:
|
2 |
+
arch: minigpt4
|
3 |
+
model_type: pretrain_vicuna0
|
|
|
|
|
4 |
max_txt_len: 160
|
5 |
end_sym: "###"
|
6 |
low_resource: True
|
|
|
7 |
prompt_template: '###Human: {} ###Assistant: '
|
8 |
+
ckpt: 'please set this value to the path of pretrained checkpoint'
|
9 |
|
10 |
|
11 |
datasets:
|
eval_configs/minigptv2_eval.yaml
CHANGED
@@ -5,7 +5,7 @@ model:
|
|
5 |
end_sym: "</s>"
|
6 |
low_resource: True
|
7 |
prompt_template: '[INST] {} [/INST]'
|
8 |
-
ckpt: '
|
9 |
lora_r: 64
|
10 |
lora_alpha: 16
|
11 |
|
|
|
5 |
end_sym: "</s>"
|
6 |
low_resource: True
|
7 |
prompt_template: '[INST] {} [/INST]'
|
8 |
+
ckpt: 'please set this value to the path of pretrained checkpoint'
|
9 |
lora_r: 64
|
10 |
lora_alpha: 16
|
11 |
|
minigpt4/common/dist_utils.py
CHANGED
@@ -55,7 +55,10 @@ def is_main_process():
|
|
55 |
|
56 |
|
57 |
def init_distributed_mode(args):
|
58 |
-
if
|
|
|
|
|
|
|
59 |
args.rank = int(os.environ["RANK"])
|
60 |
args.world_size = int(os.environ["WORLD_SIZE"])
|
61 |
args.gpu = int(os.environ["LOCAL_RANK"])
|
|
|
55 |
|
56 |
|
57 |
def init_distributed_mode(args):
|
58 |
+
if args.distributed is False:
|
59 |
+
print("Not using distributed mode")
|
60 |
+
return
|
61 |
+
elif "RANK" in os.environ and "WORLD_SIZE" in os.environ:
|
62 |
args.rank = int(os.environ["RANK"])
|
63 |
args.world_size = int(os.environ["WORLD_SIZE"])
|
64 |
args.gpu = int(os.environ["LOCAL_RANK"])
|
minigpt4/configs/models/minigpt_v2.yaml
CHANGED
@@ -11,7 +11,7 @@ model:
|
|
11 |
# generation configs
|
12 |
prompt: ""
|
13 |
|
14 |
-
llama_model: "
|
15 |
lora_r: 64
|
16 |
lora_alpha: 16
|
17 |
|
|
|
11 |
# generation configs
|
12 |
prompt: ""
|
13 |
|
14 |
+
llama_model: "please set this value to the path of llama2-chat-7b"
|
15 |
lora_r: 64
|
16 |
lora_alpha: 16
|
17 |
|
minigpt4/conversation/conversation.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import argparse
|
2 |
import time
|
|
|
3 |
from PIL import Image
|
4 |
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
7 |
-
from transformers import StoppingCriteria, StoppingCriteriaList
|
8 |
|
9 |
import dataclasses
|
10 |
from enum import auto, Enum
|
@@ -39,18 +40,18 @@ class Conversation:
|
|
39 |
ret = self.system + self.sep
|
40 |
for role, message in self.messages:
|
41 |
if message:
|
42 |
-
ret += role +
|
43 |
else:
|
44 |
-
ret += role
|
45 |
return ret
|
46 |
elif self.sep_style == SeparatorStyle.TWO:
|
47 |
seps = [self.sep, self.sep2]
|
48 |
ret = self.system + seps[0]
|
49 |
for i, (role, message) in enumerate(self.messages):
|
50 |
if message:
|
51 |
-
ret += role +
|
52 |
else:
|
53 |
-
ret += role
|
54 |
return ret
|
55 |
else:
|
56 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
@@ -106,26 +107,39 @@ class StoppingCriteriaSub(StoppingCriteria):
|
|
106 |
return False
|
107 |
|
108 |
|
109 |
-
|
110 |
system="Give the following image: <Img>ImageContent</Img>. "
|
111 |
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
112 |
-
roles=("Human", "Assistant"),
|
113 |
messages=[],
|
114 |
offset=2,
|
115 |
sep_style=SeparatorStyle.SINGLE,
|
116 |
sep="###",
|
117 |
)
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
|
121 |
class Chat:
|
122 |
-
def __init__(self, model, vis_processor, device='cuda:0'):
|
123 |
self.device = device
|
124 |
self.model = model
|
125 |
self.vis_processor = vis_processor
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
129 |
|
130 |
def ask(self, text, conv):
|
131 |
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
@@ -134,11 +148,19 @@ class Chat:
|
|
134 |
else:
|
135 |
conv.append_message(conv.roles[0], text)
|
136 |
|
137 |
-
def
|
138 |
-
|
139 |
conv.append_message(conv.roles[1], None)
|
140 |
embs = self.get_context_emb(conv, img_list)
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
inputs_embeds=embs,
|
143 |
max_new_tokens=max_new_tokens,
|
144 |
stopping_criteria=self.stopping_criteria,
|
@@ -148,18 +170,33 @@ class Chat:
|
|
148 |
top_p=top_p,
|
149 |
repetition_penalty=repetition_penalty,
|
150 |
length_penalty=length_penalty,
|
151 |
-
temperature=temperature,
|
152 |
)
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
157 |
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
158 |
output_text = output_text.split('Assistant:')[-1].strip()
|
|
|
159 |
conv.messages[-1][1] = output_text
|
160 |
return output_text, output_token.cpu().numpy()
|
161 |
|
162 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
if isinstance(image, str): # is a image path
|
164 |
raw_image = Image.open(image).convert('RGB')
|
165 |
image = self.vis_processor(raw_image).unsqueeze(0).to(self.device)
|
@@ -173,9 +210,12 @@ class Chat:
|
|
173 |
|
174 |
image_emb, _ = self.model.encode_img(image)
|
175 |
img_list.append(image_emb)
|
|
|
|
|
176 |
conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
|
|
|
177 |
msg = "Received."
|
178 |
-
|
179 |
return msg
|
180 |
|
181 |
def get_context_emb(self, conv, img_list):
|
@@ -188,7 +228,9 @@ class Chat:
|
|
188 |
# only add bos to the first seg
|
189 |
for i, seg in enumerate(prompt_segs)
|
190 |
]
|
191 |
-
|
|
|
|
|
192 |
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
193 |
mixed_embs = torch.cat(mixed_embs, dim=1)
|
194 |
return mixed_embs
|
|
|
1 |
import argparse
|
2 |
import time
|
3 |
+
from threading import Thread
|
4 |
from PIL import Image
|
5 |
|
6 |
import torch
|
7 |
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer
|
8 |
+
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
9 |
|
10 |
import dataclasses
|
11 |
from enum import auto, Enum
|
|
|
40 |
ret = self.system + self.sep
|
41 |
for role, message in self.messages:
|
42 |
if message:
|
43 |
+
ret += role + message + self.sep
|
44 |
else:
|
45 |
+
ret += role
|
46 |
return ret
|
47 |
elif self.sep_style == SeparatorStyle.TWO:
|
48 |
seps = [self.sep, self.sep2]
|
49 |
ret = self.system + seps[0]
|
50 |
for i, (role, message) in enumerate(self.messages):
|
51 |
if message:
|
52 |
+
ret += role + message + seps[i % 2]
|
53 |
else:
|
54 |
+
ret += role
|
55 |
return ret
|
56 |
else:
|
57 |
raise ValueError(f"Invalid style: {self.sep_style}")
|
|
|
107 |
return False
|
108 |
|
109 |
|
110 |
+
CONV_VISION_Vicuna0 = Conversation(
|
111 |
system="Give the following image: <Img>ImageContent</Img>. "
|
112 |
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
113 |
+
roles=("Human: ", "Assistant: "),
|
114 |
messages=[],
|
115 |
offset=2,
|
116 |
sep_style=SeparatorStyle.SINGLE,
|
117 |
sep="###",
|
118 |
)
|
119 |
|
120 |
+
CONV_VISION_LLama2 = Conversation(
|
121 |
+
system="Give the following image: <Img>ImageContent</Img>. "
|
122 |
+
"You will be able to see the image once I provide it to you. Please answer my questions.",
|
123 |
+
roles=("<s>[INST] ", " [/INST] "),
|
124 |
+
messages=[],
|
125 |
+
offset=2,
|
126 |
+
sep_style=SeparatorStyle.SINGLE,
|
127 |
+
sep="",
|
128 |
+
)
|
129 |
+
|
130 |
|
131 |
|
132 |
class Chat:
|
133 |
+
def __init__(self, model, vis_processor, device='cuda:0', stopping_criteria=None):
|
134 |
self.device = device
|
135 |
self.model = model
|
136 |
self.vis_processor = vis_processor
|
137 |
+
|
138 |
+
if stopping_criteria is not None:
|
139 |
+
self.stopping_criteria = stopping_criteria
|
140 |
+
else:
|
141 |
+
stop_words_ids = [torch.tensor([2]).to(self.device)]
|
142 |
+
self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
|
143 |
|
144 |
def ask(self, text, conv):
|
145 |
if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \
|
|
|
148 |
else:
|
149 |
conv.append_message(conv.roles[0], text)
|
150 |
|
151 |
+
def answer_prepare(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9,
|
152 |
+
repetition_penalty=1.05, length_penalty=1, temperature=1.0, max_length=2000):
|
153 |
conv.append_message(conv.roles[1], None)
|
154 |
embs = self.get_context_emb(conv, img_list)
|
155 |
+
|
156 |
+
current_max_len = embs.shape[1] + max_new_tokens
|
157 |
+
if current_max_len - max_length > 0:
|
158 |
+
print('Warning: The number of tokens in current conversation exceeds the max length. '
|
159 |
+
'The model will not see the contexts outside the range.')
|
160 |
+
begin_idx = max(0, current_max_len - max_length)
|
161 |
+
embs = embs[:, begin_idx:]
|
162 |
+
|
163 |
+
generation_kwargs = dict(
|
164 |
inputs_embeds=embs,
|
165 |
max_new_tokens=max_new_tokens,
|
166 |
stopping_criteria=self.stopping_criteria,
|
|
|
170 |
top_p=top_p,
|
171 |
repetition_penalty=repetition_penalty,
|
172 |
length_penalty=length_penalty,
|
173 |
+
temperature=float(temperature),
|
174 |
)
|
175 |
+
return generation_kwargs
|
176 |
+
|
177 |
+
def answer(self, conv, img_list, **kargs):
|
178 |
+
generation_dict = self.answer_prepare(conv, img_list, **kargs)
|
179 |
+
|
180 |
+
output_token = self.model.llama_model.generate(**generation_dict)[0]
|
181 |
+
output_text = self.model.llama_tokenizer.decode(output_token, skip_special_tokens=True)
|
182 |
+
|
183 |
output_text = output_text.split('###')[0] # remove the stop sign '###'
|
184 |
output_text = output_text.split('Assistant:')[-1].strip()
|
185 |
+
|
186 |
conv.messages[-1][1] = output_text
|
187 |
return output_text, output_token.cpu().numpy()
|
188 |
|
189 |
+
def stream_answer(self, conv, img_list, **kargs):
|
190 |
+
generation_kwargs = self.answer_prepare(conv, img_list, **kargs)
|
191 |
+
streamer = TextIteratorStreamer(self.model.llama_tokenizer, skip_special_tokens=True)
|
192 |
+
generation_kwargs['streamer'] = streamer
|
193 |
+
thread = Thread(target=self.model.llama_model.generate, kwargs=generation_kwargs)
|
194 |
+
thread.start()
|
195 |
+
return streamer
|
196 |
+
|
197 |
+
def encode_img(self, img_list):
|
198 |
+
image = img_list[0]
|
199 |
+
img_list.pop(0)
|
200 |
if isinstance(image, str): # is a image path
|
201 |
raw_image = Image.open(image).convert('RGB')
|
202 |
image = self.vis_processor(raw_image).unsqueeze(0).to(self.device)
|
|
|
210 |
|
211 |
image_emb, _ = self.model.encode_img(image)
|
212 |
img_list.append(image_emb)
|
213 |
+
|
214 |
+
def upload_img(self, image, conv, img_list):
|
215 |
conv.append_message(conv.roles[0], "<Img><ImageHere></Img>")
|
216 |
+
img_list.append(image)
|
217 |
msg = "Received."
|
218 |
+
|
219 |
return msg
|
220 |
|
221 |
def get_context_emb(self, conv, img_list):
|
|
|
228 |
# only add bos to the first seg
|
229 |
for i, seg in enumerate(prompt_segs)
|
230 |
]
|
231 |
+
print('debug device: ', self.device)
|
232 |
+
print('debug model device: ', self.model.device)
|
233 |
+
seg_embs = [self.model.embed_tokens(seg_t) for seg_t in seg_tokens]
|
234 |
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
|
235 |
mixed_embs = torch.cat(mixed_embs, dim=1)
|
236 |
return mixed_embs
|
minigpt4/datasets/datasets/cc_sbu_dataset.py
CHANGED
@@ -22,7 +22,7 @@ class CCSBUDataset(BaseDataset):
|
|
22 |
def to_dict(self, sample):
|
23 |
return {
|
24 |
"image": sample[0],
|
25 |
-
"
|
26 |
}
|
27 |
|
28 |
|
@@ -42,6 +42,6 @@ class CCSBUAlignDataset(CaptionDataset):
|
|
42 |
|
43 |
return {
|
44 |
"image": image,
|
45 |
-
"
|
46 |
"image_id": self.img_ids[ann["image_id"]],
|
47 |
}
|
|
|
22 |
def to_dict(self, sample):
|
23 |
return {
|
24 |
"image": sample[0],
|
25 |
+
"answer": self.text_processor(sample[1]["caption"]),
|
26 |
}
|
27 |
|
28 |
|
|
|
42 |
|
43 |
return {
|
44 |
"image": image,
|
45 |
+
"answer": caption,
|
46 |
"image_id": self.img_ids[ann["image_id"]],
|
47 |
}
|
minigpt4/datasets/datasets/laion_dataset.py
CHANGED
@@ -26,6 +26,6 @@ class LaionDataset(BaseDataset):
|
|
26 |
def to_dict(self, sample):
|
27 |
return {
|
28 |
"image": sample[0],
|
29 |
-
"
|
30 |
}
|
31 |
|
|
|
26 |
def to_dict(self, sample):
|
27 |
return {
|
28 |
"image": sample[0],
|
29 |
+
"answer": self.text_processor(sample[1]["caption"]),
|
30 |
}
|
31 |
|
minigpt4/models/__init__.py
CHANGED
@@ -11,16 +11,18 @@ from omegaconf import OmegaConf
|
|
11 |
|
12 |
from minigpt4.common.registry import registry
|
13 |
from minigpt4.models.base_model import BaseModel
|
14 |
-
from minigpt4.models.
|
15 |
-
from minigpt4.models.
|
|
|
16 |
from minigpt4.processors.base_processor import BaseProcessor
|
17 |
|
18 |
|
19 |
__all__ = [
|
20 |
"load_model",
|
21 |
"BaseModel",
|
22 |
-
"
|
23 |
"MiniGPT4",
|
|
|
24 |
]
|
25 |
|
26 |
|
|
|
11 |
|
12 |
from minigpt4.common.registry import registry
|
13 |
from minigpt4.models.base_model import BaseModel
|
14 |
+
from minigpt4.models.minigpt_base import MiniGPTBase
|
15 |
+
from minigpt4.models.minigpt4 import MiniGPT4
|
16 |
+
from minigpt4.models.minigpt_v2 import MiniGPTv2
|
17 |
from minigpt4.processors.base_processor import BaseProcessor
|
18 |
|
19 |
|
20 |
__all__ = [
|
21 |
"load_model",
|
22 |
"BaseModel",
|
23 |
+
"MiniGPTBase",
|
24 |
"MiniGPT4",
|
25 |
+
"MiniGPTv2"
|
26 |
]
|
27 |
|
28 |
|
minigpt4/models/base_model.py
CHANGED
@@ -5,15 +5,26 @@
|
|
5 |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
"""
|
7 |
|
8 |
-
import logging
|
9 |
import os
|
|
|
|
|
10 |
|
|
|
11 |
import numpy as np
|
12 |
import torch
|
13 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
|
15 |
from minigpt4.common.utils import get_abs_path, is_url
|
16 |
-
from
|
|
|
17 |
|
18 |
|
19 |
class BaseModel(nn.Module):
|
@@ -24,7 +35,7 @@ class BaseModel(nn.Module):
|
|
24 |
|
25 |
@property
|
26 |
def device(self):
|
27 |
-
return list(self.parameters())[
|
28 |
|
29 |
def load_checkpoint(self, url_or_filename):
|
30 |
"""
|
@@ -117,131 +128,121 @@ class BaseModel(nn.Module):
|
|
117 |
else:
|
118 |
return tot
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
-
class BaseEncoder(nn.Module):
|
122 |
-
"""
|
123 |
-
Base class for primitive encoders, such as ViT, TimeSformer, etc.
|
124 |
-
"""
|
125 |
|
126 |
-
def __init__(self):
|
127 |
-
super().__init__()
|
128 |
|
129 |
-
def forward_features(self, samples, **kwargs):
|
130 |
-
raise NotImplementedError
|
131 |
|
132 |
-
@property
|
133 |
-
def device(self):
|
134 |
-
return list(self.parameters())[0].device
|
135 |
-
|
136 |
-
|
137 |
-
class SharedQueueMixin:
|
138 |
-
@torch.no_grad()
|
139 |
-
def _dequeue_and_enqueue(self, image_feat, text_feat, idxs=None):
|
140 |
-
# gather keys before updating queue
|
141 |
-
image_feats = concat_all_gather(image_feat)
|
142 |
-
text_feats = concat_all_gather(text_feat)
|
143 |
-
|
144 |
-
batch_size = image_feats.shape[0]
|
145 |
-
|
146 |
-
ptr = int(self.queue_ptr)
|
147 |
-
assert self.queue_size % batch_size == 0 # for simplicity
|
148 |
-
|
149 |
-
# replace the keys at ptr (dequeue and enqueue)
|
150 |
-
self.image_queue[:, ptr : ptr + batch_size] = image_feats.T
|
151 |
-
self.text_queue[:, ptr : ptr + batch_size] = text_feats.T
|
152 |
-
|
153 |
-
if idxs is not None:
|
154 |
-
idxs = concat_all_gather(idxs)
|
155 |
-
self.idx_queue[:, ptr : ptr + batch_size] = idxs.T
|
156 |
-
|
157 |
-
ptr = (ptr + batch_size) % self.queue_size # move pointer
|
158 |
-
self.queue_ptr[0] = ptr
|
159 |
-
|
160 |
-
|
161 |
-
class MomentumDistilationMixin:
|
162 |
-
@torch.no_grad()
|
163 |
-
def copy_params(self):
|
164 |
-
for model_pair in self.model_pairs:
|
165 |
-
for param, param_m in zip(
|
166 |
-
model_pair[0].parameters(), model_pair[1].parameters()
|
167 |
-
):
|
168 |
-
param_m.data.copy_(param.data) # initialize
|
169 |
-
param_m.requires_grad = False # not update by gradient
|
170 |
-
|
171 |
-
@torch.no_grad()
|
172 |
-
def _momentum_update(self):
|
173 |
-
for model_pair in self.model_pairs:
|
174 |
-
for param, param_m in zip(
|
175 |
-
model_pair[0].parameters(), model_pair[1].parameters()
|
176 |
-
):
|
177 |
-
param_m.data = param_m.data * self.momentum + param.data * (
|
178 |
-
1.0 - self.momentum
|
179 |
-
)
|
180 |
-
|
181 |
-
|
182 |
-
class GatherLayer(torch.autograd.Function):
|
183 |
-
"""
|
184 |
-
Gather tensors from all workers with support for backward propagation:
|
185 |
-
This implementation does not cut the gradients as torch.distributed.all_gather does.
|
186 |
-
"""
|
187 |
-
|
188 |
-
@staticmethod
|
189 |
-
def forward(ctx, x):
|
190 |
-
output = [
|
191 |
-
torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())
|
192 |
-
]
|
193 |
-
torch.distributed.all_gather(output, x)
|
194 |
-
return tuple(output)
|
195 |
-
|
196 |
-
@staticmethod
|
197 |
-
def backward(ctx, *grads):
|
198 |
-
all_gradients = torch.stack(grads)
|
199 |
-
torch.distributed.all_reduce(all_gradients)
|
200 |
-
return all_gradients[torch.distributed.get_rank()]
|
201 |
-
|
202 |
-
|
203 |
-
def all_gather_with_grad(tensors):
|
204 |
-
"""
|
205 |
-
Performs all_gather operation on the provided tensors.
|
206 |
-
Graph remains connected for backward grad computation.
|
207 |
-
"""
|
208 |
-
# Queue the gathered tensors
|
209 |
-
world_size = torch.distributed.get_world_size()
|
210 |
-
# There is no need for reduction in the single-proc case
|
211 |
-
if world_size == 1:
|
212 |
-
return tensors
|
213 |
-
|
214 |
-
# tensor_all = GatherLayer.apply(tensors)
|
215 |
-
tensor_all = GatherLayer.apply(tensors)
|
216 |
-
|
217 |
-
return torch.cat(tensor_all, dim=0)
|
218 |
-
|
219 |
-
|
220 |
-
@torch.no_grad()
|
221 |
-
def concat_all_gather(tensor):
|
222 |
-
"""
|
223 |
-
Performs all_gather operation on the provided tensors.
|
224 |
-
*** Warning ***: torch.distributed.all_gather has no gradient.
|
225 |
-
"""
|
226 |
-
# if use distributed training
|
227 |
-
if not is_dist_avail_and_initialized():
|
228 |
-
return tensor
|
229 |
-
|
230 |
-
tensors_gather = [
|
231 |
-
torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size())
|
232 |
-
]
|
233 |
-
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
|
234 |
-
|
235 |
-
output = torch.cat(tensors_gather, dim=0)
|
236 |
-
return output
|
237 |
-
|
238 |
-
|
239 |
-
def tile(x, dim, n_tile):
|
240 |
-
init_dim = x.size(dim)
|
241 |
-
repeat_idx = [1] * x.dim()
|
242 |
-
repeat_idx[dim] = n_tile
|
243 |
-
x = x.repeat(*(repeat_idx))
|
244 |
-
order_index = torch.LongTensor(
|
245 |
-
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
|
246 |
-
)
|
247 |
-
return torch.index_select(x, dim, order_index.to(x.device))
|
|
|
5 |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
6 |
"""
|
7 |
|
|
|
8 |
import os
|
9 |
+
import logging
|
10 |
+
import contextlib
|
11 |
|
12 |
+
from omegaconf import OmegaConf
|
13 |
import numpy as np
|
14 |
import torch
|
15 |
import torch.nn as nn
|
16 |
+
from transformers import BertTokenizer, LlamaTokenizer
|
17 |
+
from transformers.models.llama.modeling_llama import LlamaForCausalLM
|
18 |
+
from peft import (
|
19 |
+
LoraConfig,
|
20 |
+
get_peft_model,
|
21 |
+
prepare_model_for_int8_training,
|
22 |
+
)
|
23 |
+
|
24 |
from minigpt4.common.dist_utils import download_cached_file, is_dist_avail_and_initialized
|
25 |
from minigpt4.common.utils import get_abs_path, is_url
|
26 |
+
from minigpt4.models.eva_vit import create_eva_vit_g
|
27 |
+
|
28 |
|
29 |
|
30 |
class BaseModel(nn.Module):
|
|
|
35 |
|
36 |
@property
|
37 |
def device(self):
|
38 |
+
return list(self.parameters())[-1].device
|
39 |
|
40 |
def load_checkpoint(self, url_or_filename):
|
41 |
"""
|
|
|
128 |
else:
|
129 |
return tot
|
130 |
|
131 |
+
def maybe_autocast(self, dtype=torch.float16):
|
132 |
+
# if on cpu, don't use autocast
|
133 |
+
# if on gpu, use autocast with dtype if provided, otherwise use torch.float16
|
134 |
+
enable_autocast = self.device != torch.device("cpu")
|
135 |
+
|
136 |
+
if enable_autocast:
|
137 |
+
return torch.cuda.amp.autocast(dtype=dtype)
|
138 |
+
else:
|
139 |
+
return contextlib.nullcontext()
|
140 |
+
|
141 |
+
@classmethod
|
142 |
+
def init_vision_encoder(
|
143 |
+
cls, model_name, img_size, drop_path_rate, use_grad_checkpoint, precision, freeze
|
144 |
+
):
|
145 |
+
logging.info('Loading VIT')
|
146 |
+
|
147 |
+
assert model_name == "eva_clip_g", "vit model must be eva_clip_g for current version of MiniGPT-4"
|
148 |
+
if not freeze:
|
149 |
+
precision = "fp32" # fp16 is not for training
|
150 |
+
|
151 |
+
visual_encoder = create_eva_vit_g(
|
152 |
+
img_size, drop_path_rate, use_grad_checkpoint, precision
|
153 |
+
)
|
154 |
+
|
155 |
+
ln_vision = LayerNorm(visual_encoder.num_features)
|
156 |
+
|
157 |
+
if freeze:
|
158 |
+
for name, param in visual_encoder.named_parameters():
|
159 |
+
param.requires_grad = False
|
160 |
+
visual_encoder = visual_encoder.eval()
|
161 |
+
visual_encoder.train = disabled_train
|
162 |
+
for name, param in ln_vision.named_parameters():
|
163 |
+
param.requires_grad = False
|
164 |
+
ln_vision = ln_vision.eval()
|
165 |
+
ln_vision.train = disabled_train
|
166 |
+
logging.info("freeze vision encoder")
|
167 |
+
|
168 |
+
logging.info('Loading VIT Done')
|
169 |
+
return visual_encoder, ln_vision
|
170 |
+
|
171 |
+
def init_llm(cls, llama_model_path, low_resource=False, low_res_device=0, lora_r=0,
|
172 |
+
lora_target_modules=["q_proj","v_proj"], **lora_kargs):
|
173 |
+
logging.info('Loading LLAMA')
|
174 |
+
llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model_path, use_fast=False)
|
175 |
+
llama_tokenizer.pad_token = "$$"
|
176 |
+
|
177 |
+
if low_resource:
|
178 |
+
llama_model = LlamaForCausalLM.from_pretrained(
|
179 |
+
llama_model_path,
|
180 |
+
torch_dtype=torch.float16,
|
181 |
+
load_in_8bit=True,
|
182 |
+
device_map={'': low_res_device}
|
183 |
+
)
|
184 |
+
else:
|
185 |
+
llama_model = LlamaForCausalLM.from_pretrained(
|
186 |
+
llama_model_path,
|
187 |
+
torch_dtype=torch.float16,
|
188 |
+
)
|
189 |
+
|
190 |
+
if lora_r > 0:
|
191 |
+
llama_model = prepare_model_for_int8_training(llama_model)
|
192 |
+
loraconfig = LoraConfig(
|
193 |
+
r=lora_r,
|
194 |
+
bias="none",
|
195 |
+
task_type="CAUSAL_LM",
|
196 |
+
target_modules=lora_target_modules,
|
197 |
+
**lora_kargs
|
198 |
+
)
|
199 |
+
llama_model = get_peft_model(llama_model, loraconfig)
|
200 |
+
|
201 |
+
llama_model.print_trainable_parameters()
|
202 |
+
|
203 |
+
else:
|
204 |
+
for name, param in llama_model.named_parameters():
|
205 |
+
param.requires_grad = False
|
206 |
+
logging.info('Loading LLAMA Done')
|
207 |
+
return llama_model, llama_tokenizer
|
208 |
+
|
209 |
+
|
210 |
+
def load_from_pretrained(self, url_or_filename):
|
211 |
+
if is_url(url_or_filename):
|
212 |
+
cached_file = download_cached_file(
|
213 |
+
url_or_filename, check_hash=False, progress=True
|
214 |
+
)
|
215 |
+
checkpoint = torch.load(cached_file, map_location="cpu")
|
216 |
+
elif os.path.isfile(url_or_filename):
|
217 |
+
checkpoint = torch.load(url_or_filename, map_location="cpu")
|
218 |
+
else:
|
219 |
+
raise RuntimeError("checkpoint url or path is invalid")
|
220 |
+
|
221 |
+
state_dict = checkpoint["model"]
|
222 |
+
|
223 |
+
msg = self.load_state_dict(state_dict, strict=False)
|
224 |
+
|
225 |
+
# logging.info("Missing keys {}".format(msg.missing_keys))
|
226 |
+
logging.info("load checkpoint from %s" % url_or_filename)
|
227 |
+
|
228 |
+
return msg
|
229 |
+
|
230 |
+
|
231 |
+
def disabled_train(self, mode=True):
|
232 |
+
"""Overwrite model.train with this function to make sure train/eval mode
|
233 |
+
does not change anymore."""
|
234 |
+
return self
|
235 |
+
|
236 |
+
|
237 |
+
class LayerNorm(nn.LayerNorm):
|
238 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
239 |
+
|
240 |
+
def forward(self, x: torch.Tensor):
|
241 |
+
orig_type = x.dtype
|
242 |
+
ret = super().forward(x.type(torch.float32))
|
243 |
+
return ret.type(orig_type)
|
244 |
+
|
245 |
|
|
|
|
|
|
|
|
|
246 |
|
|
|
|
|
247 |
|
|
|
|
|
248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
minigpt4/models/minigpt_base.py
CHANGED
@@ -7,6 +7,7 @@ import torch.nn as nn
|
|
7 |
|
8 |
from minigpt4.common.registry import registry
|
9 |
from minigpt4.models.base_model import BaseModel
|
|
|
10 |
|
11 |
|
12 |
|
@@ -365,8 +366,8 @@ class MiniGPTBase(BaseModel):
|
|
365 |
do_sample=do_sample,
|
366 |
min_length=min_length,
|
367 |
top_p=top_p,
|
368 |
-
repetition_penalty=repetition_penalty
|
369 |
-
|
370 |
)
|
371 |
|
372 |
answers = []
|
|
|
7 |
|
8 |
from minigpt4.common.registry import registry
|
9 |
from minigpt4.models.base_model import BaseModel
|
10 |
+
from transformers import StoppingCriteria, StoppingCriteriaList
|
11 |
|
12 |
|
13 |
|
|
|
366 |
do_sample=do_sample,
|
367 |
min_length=min_length,
|
368 |
top_p=top_p,
|
369 |
+
repetition_penalty=repetition_penalty,
|
370 |
+
stopping_criteria=stopping_criteria,
|
371 |
)
|
372 |
|
373 |
answers = []
|
minigpt4/models/modeling_llama.py
CHANGED
@@ -1,628 +1,17 @@
|
|
1 |
-
# This script is based on https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
|
2 |
-
|
3 |
-
""" PyTorch LLaMA model."""
|
4 |
import math
|
5 |
from typing import List, Optional, Tuple, Union
|
6 |
|
7 |
import torch
|
8 |
-
import torch.
|
9 |
-
from torch import
|
10 |
-
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
11 |
-
|
12 |
-
from transformers.activations import ACT2FN
|
13 |
-
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
14 |
-
from transformers.modeling_utils import PreTrainedModel
|
15 |
-
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
16 |
-
from transformers.models.llama.configuration_llama import LlamaConfig
|
17 |
-
|
18 |
-
|
19 |
-
logger = logging.get_logger(__name__)
|
20 |
-
|
21 |
-
_CONFIG_FOR_DOC = "LlamaConfig"
|
22 |
-
|
23 |
-
|
24 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
25 |
-
def _make_causal_mask(
|
26 |
-
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
27 |
-
):
|
28 |
-
"""
|
29 |
-
Make causal mask used for bi-directional self-attention.
|
30 |
-
"""
|
31 |
-
bsz, tgt_len = input_ids_shape
|
32 |
-
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
33 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
34 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
35 |
-
mask = mask.to(dtype)
|
36 |
-
|
37 |
-
if past_key_values_length > 0:
|
38 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
39 |
-
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
40 |
-
|
41 |
-
|
42 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
43 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
44 |
-
"""
|
45 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
46 |
-
"""
|
47 |
-
bsz, src_len = mask.size()
|
48 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
49 |
-
|
50 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
51 |
-
|
52 |
-
inverted_mask = 1.0 - expanded_mask
|
53 |
-
|
54 |
-
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
55 |
-
|
56 |
-
|
57 |
-
class LlamaRMSNorm(nn.Module):
|
58 |
-
def __init__(self, hidden_size, eps=1e-6):
|
59 |
-
"""
|
60 |
-
LlamaRMSNorm is equivalent to T5LayerNorm
|
61 |
-
"""
|
62 |
-
super().__init__()
|
63 |
-
self.weight = nn.Parameter(torch.ones(hidden_size))
|
64 |
-
self.variance_epsilon = eps
|
65 |
-
|
66 |
-
def forward(self, hidden_states):
|
67 |
-
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
68 |
-
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
69 |
-
|
70 |
-
# convert into half-precision if necessary
|
71 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
72 |
-
hidden_states = hidden_states.to(self.weight.dtype)
|
73 |
-
|
74 |
-
return self.weight * hidden_states
|
75 |
-
|
76 |
-
|
77 |
-
class LlamaRotaryEmbedding(torch.nn.Module):
|
78 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
79 |
-
super().__init__()
|
80 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
81 |
-
self.register_buffer("inv_freq", inv_freq)
|
82 |
-
|
83 |
-
# Build here to make `torch.jit.trace` work.
|
84 |
-
self.max_seq_len_cached = max_position_embeddings
|
85 |
-
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
86 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
87 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
88 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
89 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
90 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
91 |
-
|
92 |
-
def forward(self, x, seq_len=None):
|
93 |
-
# x: [bs, num_attention_heads, seq_len, head_size]
|
94 |
-
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
95 |
-
if seq_len > self.max_seq_len_cached:
|
96 |
-
self.max_seq_len_cached = seq_len
|
97 |
-
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
98 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
99 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
100 |
-
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
101 |
-
self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
|
102 |
-
self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
|
103 |
-
return (
|
104 |
-
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
105 |
-
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
def rotate_half(x):
|
110 |
-
"""Rotates half the hidden dims of the input."""
|
111 |
-
x1 = x[..., : x.shape[-1] // 2]
|
112 |
-
x2 = x[..., x.shape[-1] // 2 :]
|
113 |
-
return torch.cat((-x2, x1), dim=-1)
|
114 |
-
|
115 |
-
|
116 |
-
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
117 |
-
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
118 |
-
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
119 |
-
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
120 |
-
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
121 |
-
q_embed = (q * cos) + (rotate_half(q) * sin)
|
122 |
-
k_embed = (k * cos) + (rotate_half(k) * sin)
|
123 |
-
return q_embed, k_embed
|
124 |
-
|
125 |
-
|
126 |
-
class LlamaMLP(nn.Module):
|
127 |
-
def __init__(
|
128 |
-
self,
|
129 |
-
hidden_size: int,
|
130 |
-
intermediate_size: int,
|
131 |
-
hidden_act: str,
|
132 |
-
):
|
133 |
-
super().__init__()
|
134 |
-
self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
135 |
-
self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
|
136 |
-
self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
|
137 |
-
self.act_fn = ACT2FN[hidden_act]
|
138 |
-
|
139 |
-
def forward(self, x):
|
140 |
-
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
141 |
-
|
142 |
-
|
143 |
-
class LlamaAttention(nn.Module):
|
144 |
-
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
145 |
-
|
146 |
-
def __init__(self, config: LlamaConfig):
|
147 |
-
super().__init__()
|
148 |
-
self.config = config
|
149 |
-
self.hidden_size = config.hidden_size
|
150 |
-
self.num_heads = config.num_attention_heads
|
151 |
-
self.head_dim = self.hidden_size // self.num_heads
|
152 |
-
self.max_position_embeddings = config.max_position_embeddings
|
153 |
-
|
154 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
155 |
-
raise ValueError(
|
156 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
157 |
-
f" and `num_heads`: {self.num_heads})."
|
158 |
-
)
|
159 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
160 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
161 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
162 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
163 |
-
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
164 |
-
|
165 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
166 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
167 |
-
|
168 |
-
def forward(
|
169 |
-
self,
|
170 |
-
hidden_states: torch.Tensor,
|
171 |
-
attention_mask: Optional[torch.Tensor] = None,
|
172 |
-
position_ids: Optional[torch.LongTensor] = None,
|
173 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
174 |
-
output_attentions: bool = False,
|
175 |
-
use_cache: bool = False,
|
176 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
177 |
-
bsz, q_len, _ = hidden_states.size()
|
178 |
-
|
179 |
-
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
180 |
-
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
181 |
-
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
182 |
-
|
183 |
-
kv_seq_len = key_states.shape[-2]
|
184 |
-
if past_key_value is not None:
|
185 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
186 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
187 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
188 |
-
# [bsz, nh, t, hd]
|
189 |
-
|
190 |
-
if past_key_value is not None:
|
191 |
-
# reuse k, v, self_attention
|
192 |
-
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
193 |
-
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
194 |
-
|
195 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
196 |
-
|
197 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
198 |
-
|
199 |
-
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
200 |
-
raise ValueError(
|
201 |
-
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
|
202 |
-
f" {attn_weights.size()}"
|
203 |
-
)
|
204 |
-
|
205 |
-
if attention_mask is not None:
|
206 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
207 |
-
raise ValueError(
|
208 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
209 |
-
)
|
210 |
-
attn_weights = attn_weights + attention_mask
|
211 |
-
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
212 |
-
|
213 |
-
# upcast attention to fp32
|
214 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
215 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
216 |
-
|
217 |
-
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
218 |
-
raise ValueError(
|
219 |
-
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
220 |
-
f" {attn_output.size()}"
|
221 |
-
)
|
222 |
-
|
223 |
-
attn_output = attn_output.transpose(1, 2)
|
224 |
-
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
225 |
-
|
226 |
-
attn_output = self.o_proj(attn_output)
|
227 |
-
|
228 |
-
if not output_attentions:
|
229 |
-
attn_weights = None
|
230 |
-
|
231 |
-
return attn_output, attn_weights, past_key_value
|
232 |
-
|
233 |
-
|
234 |
-
class LlamaDecoderLayer(nn.Module):
|
235 |
-
def __init__(self, config: LlamaConfig):
|
236 |
-
super().__init__()
|
237 |
-
self.hidden_size = config.hidden_size
|
238 |
-
self.self_attn = LlamaAttention(config=config)
|
239 |
-
self.mlp = LlamaMLP(
|
240 |
-
hidden_size=self.hidden_size,
|
241 |
-
intermediate_size=config.intermediate_size,
|
242 |
-
hidden_act=config.hidden_act,
|
243 |
-
)
|
244 |
-
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
245 |
-
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
246 |
-
|
247 |
-
def forward(
|
248 |
-
self,
|
249 |
-
hidden_states: torch.Tensor,
|
250 |
-
attention_mask: Optional[torch.Tensor] = None,
|
251 |
-
position_ids: Optional[torch.LongTensor] = None,
|
252 |
-
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
253 |
-
output_attentions: Optional[bool] = False,
|
254 |
-
use_cache: Optional[bool] = False,
|
255 |
-
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
256 |
-
"""
|
257 |
-
Args:
|
258 |
-
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
259 |
-
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
260 |
-
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
261 |
-
output_attentions (`bool`, *optional*):
|
262 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
263 |
-
returned tensors for more detail.
|
264 |
-
use_cache (`bool`, *optional*):
|
265 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
266 |
-
(see `past_key_values`).
|
267 |
-
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
268 |
-
"""
|
269 |
-
|
270 |
-
residual = hidden_states
|
271 |
-
|
272 |
-
hidden_states = self.input_layernorm(hidden_states)
|
273 |
-
|
274 |
-
# Self Attention
|
275 |
-
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
276 |
-
hidden_states=hidden_states,
|
277 |
-
attention_mask=attention_mask,
|
278 |
-
position_ids=position_ids,
|
279 |
-
past_key_value=past_key_value,
|
280 |
-
output_attentions=output_attentions,
|
281 |
-
use_cache=use_cache,
|
282 |
-
)
|
283 |
-
hidden_states = residual + hidden_states
|
284 |
-
|
285 |
-
# Fully Connected
|
286 |
-
residual = hidden_states
|
287 |
-
hidden_states = self.post_attention_layernorm(hidden_states)
|
288 |
-
hidden_states = self.mlp(hidden_states)
|
289 |
-
hidden_states = residual + hidden_states
|
290 |
-
|
291 |
-
outputs = (hidden_states,)
|
292 |
-
|
293 |
-
if output_attentions:
|
294 |
-
outputs += (self_attn_weights,)
|
295 |
-
|
296 |
-
if use_cache:
|
297 |
-
outputs += (present_key_value,)
|
298 |
-
|
299 |
-
return outputs
|
300 |
-
|
301 |
-
|
302 |
-
LLAMA_START_DOCSTRING = r"""
|
303 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
304 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
305 |
-
etc.)
|
306 |
-
|
307 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
308 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
309 |
-
and behavior.
|
310 |
-
|
311 |
-
Parameters:
|
312 |
-
config ([`LlamaConfig`]):
|
313 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
314 |
-
load the weights associated with the model, only the configuration. Check out the
|
315 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
316 |
-
"""
|
317 |
-
|
318 |
-
|
319 |
-
@add_start_docstrings(
|
320 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
321 |
-
LLAMA_START_DOCSTRING,
|
322 |
-
)
|
323 |
-
class LlamaPreTrainedModel(PreTrainedModel):
|
324 |
-
config_class = LlamaConfig
|
325 |
-
base_model_prefix = "model"
|
326 |
-
supports_gradient_checkpointing = True
|
327 |
-
_no_split_modules = ["LlamaDecoderLayer"]
|
328 |
-
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
329 |
-
|
330 |
-
def _init_weights(self, module):
|
331 |
-
std = self.config.initializer_range
|
332 |
-
if isinstance(module, nn.Linear):
|
333 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
334 |
-
if module.bias is not None:
|
335 |
-
module.bias.data.zero_()
|
336 |
-
elif isinstance(module, nn.Embedding):
|
337 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
338 |
-
if module.padding_idx is not None:
|
339 |
-
module.weight.data[module.padding_idx].zero_()
|
340 |
-
|
341 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
342 |
-
if isinstance(module, LlamaModel):
|
343 |
-
module.gradient_checkpointing = value
|
344 |
-
|
345 |
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
it.
|
351 |
|
352 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
353 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
354 |
|
355 |
-
|
356 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
357 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
358 |
-
|
359 |
-
- 1 for tokens that are **not masked**,
|
360 |
-
- 0 for tokens that are **masked**.
|
361 |
-
|
362 |
-
[What are attention masks?](../glossary#attention-mask)
|
363 |
-
|
364 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
365 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
366 |
-
|
367 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
368 |
-
`past_key_values`).
|
369 |
-
|
370 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
371 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
372 |
-
information on the default strategy.
|
373 |
-
|
374 |
-
- 1 indicates the head is **not masked**,
|
375 |
-
- 0 indicates the head is **masked**.
|
376 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
377 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
378 |
-
config.n_positions - 1]`.
|
379 |
-
|
380 |
-
[What are position IDs?](../glossary#position-ids)
|
381 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
382 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
383 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
384 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
385 |
-
|
386 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
387 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
388 |
-
|
389 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
390 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
391 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
392 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
393 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
394 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
395 |
-
model's internal embedding lookup matrix.
|
396 |
-
use_cache (`bool`, *optional*):
|
397 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
398 |
-
`past_key_values`).
|
399 |
-
output_attentions (`bool`, *optional*):
|
400 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
401 |
-
tensors for more detail.
|
402 |
-
output_hidden_states (`bool`, *optional*):
|
403 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
404 |
-
more detail.
|
405 |
-
return_dict (`bool`, *optional*):
|
406 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
407 |
-
"""
|
408 |
-
|
409 |
-
|
410 |
-
@add_start_docstrings(
|
411 |
-
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
412 |
-
LLAMA_START_DOCSTRING,
|
413 |
-
)
|
414 |
-
class LlamaModel(LlamaPreTrainedModel):
|
415 |
-
"""
|
416 |
-
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
417 |
-
|
418 |
-
Args:
|
419 |
-
config: LlamaConfig
|
420 |
-
"""
|
421 |
-
|
422 |
-
def __init__(self, config: LlamaConfig):
|
423 |
-
super().__init__(config)
|
424 |
-
self.padding_idx = config.pad_token_id
|
425 |
-
self.vocab_size = config.vocab_size
|
426 |
-
|
427 |
-
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
428 |
-
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
429 |
-
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
430 |
-
|
431 |
-
self.gradient_checkpointing = False
|
432 |
-
# Initialize weights and apply final processing
|
433 |
-
self.post_init()
|
434 |
-
|
435 |
-
def get_input_embeddings(self):
|
436 |
-
return self.embed_tokens
|
437 |
-
|
438 |
-
def set_input_embeddings(self, value):
|
439 |
-
self.embed_tokens = value
|
440 |
-
|
441 |
-
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
442 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
443 |
-
# create causal mask
|
444 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
445 |
-
combined_attention_mask = None
|
446 |
-
if input_shape[-1] > 1:
|
447 |
-
combined_attention_mask = _make_causal_mask(
|
448 |
-
input_shape,
|
449 |
-
inputs_embeds.dtype,
|
450 |
-
device=inputs_embeds.device,
|
451 |
-
past_key_values_length=past_key_values_length,
|
452 |
-
)
|
453 |
-
|
454 |
-
if attention_mask is not None:
|
455 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
456 |
-
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
457 |
-
inputs_embeds.device
|
458 |
-
)
|
459 |
-
combined_attention_mask = (
|
460 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
461 |
-
)
|
462 |
-
|
463 |
-
return combined_attention_mask
|
464 |
-
|
465 |
-
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
466 |
-
def forward(
|
467 |
-
self,
|
468 |
-
input_ids: torch.LongTensor = None,
|
469 |
-
attention_mask: Optional[torch.Tensor] = None,
|
470 |
-
position_ids: Optional[torch.LongTensor] = None,
|
471 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
472 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
473 |
-
query_embeds: Optional[torch.FloatTensor] = None,
|
474 |
-
use_cache: Optional[bool] = None,
|
475 |
-
output_attentions: Optional[bool] = None,
|
476 |
-
output_hidden_states: Optional[bool] = None,
|
477 |
-
return_dict: Optional[bool] = None,
|
478 |
-
) -> Union[Tuple, BaseModelOutputWithPast]:
|
479 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
480 |
-
output_hidden_states = (
|
481 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
482 |
-
)
|
483 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
484 |
-
|
485 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
486 |
-
|
487 |
-
# retrieve input_ids and inputs_embeds
|
488 |
-
if input_ids is not None and inputs_embeds is not None:
|
489 |
-
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
490 |
-
elif input_ids is not None:
|
491 |
-
batch_size, seq_length = input_ids.shape
|
492 |
-
elif inputs_embeds is not None:
|
493 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
494 |
-
else:
|
495 |
-
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
496 |
-
|
497 |
-
if inputs_embeds is None:
|
498 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
499 |
-
if query_embeds is not None:
|
500 |
-
inputs_embeds = torch.cat([query_embeds, inputs_embeds], dim=1)
|
501 |
-
batch_size, seq_length, _ = inputs_embeds.shape
|
502 |
-
|
503 |
-
seq_length_with_past = seq_length
|
504 |
-
past_key_values_length = 0
|
505 |
-
|
506 |
-
if past_key_values is not None:
|
507 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
508 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
509 |
-
|
510 |
-
if position_ids is None:
|
511 |
-
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
512 |
-
position_ids = torch.arange(
|
513 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
514 |
-
)
|
515 |
-
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
516 |
-
else:
|
517 |
-
position_ids = position_ids.view(-1, seq_length).long()
|
518 |
-
|
519 |
-
# embed positions
|
520 |
-
if attention_mask is None:
|
521 |
-
attention_mask = torch.ones(
|
522 |
-
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
523 |
-
)
|
524 |
-
attention_mask = self._prepare_decoder_attention_mask(
|
525 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
526 |
-
)
|
527 |
-
|
528 |
-
hidden_states = inputs_embeds
|
529 |
-
|
530 |
-
if self.gradient_checkpointing and self.training:
|
531 |
-
if use_cache:
|
532 |
-
logger.warning_once(
|
533 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
534 |
-
)
|
535 |
-
use_cache = False
|
536 |
-
|
537 |
-
# decoder layers
|
538 |
-
all_hidden_states = () if output_hidden_states else None
|
539 |
-
all_self_attns = () if output_attentions else None
|
540 |
-
next_decoder_cache = () if use_cache else None
|
541 |
-
|
542 |
-
for idx, decoder_layer in enumerate(self.layers):
|
543 |
-
if output_hidden_states:
|
544 |
-
all_hidden_states += (hidden_states,)
|
545 |
-
|
546 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
547 |
-
|
548 |
-
if self.gradient_checkpointing and self.training:
|
549 |
-
|
550 |
-
def create_custom_forward(module):
|
551 |
-
def custom_forward(*inputs):
|
552 |
-
# None for past_key_value
|
553 |
-
return module(*inputs, output_attentions, None)
|
554 |
-
|
555 |
-
return custom_forward
|
556 |
-
|
557 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
558 |
-
create_custom_forward(decoder_layer),
|
559 |
-
hidden_states,
|
560 |
-
attention_mask,
|
561 |
-
position_ids,
|
562 |
-
None,
|
563 |
-
)
|
564 |
-
else:
|
565 |
-
layer_outputs = decoder_layer(
|
566 |
-
hidden_states,
|
567 |
-
attention_mask=attention_mask,
|
568 |
-
position_ids=position_ids,
|
569 |
-
past_key_value=past_key_value,
|
570 |
-
output_attentions=output_attentions,
|
571 |
-
use_cache=use_cache,
|
572 |
-
)
|
573 |
-
|
574 |
-
hidden_states = layer_outputs[0]
|
575 |
-
|
576 |
-
if use_cache:
|
577 |
-
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
578 |
-
|
579 |
-
if output_attentions:
|
580 |
-
all_self_attns += (layer_outputs[1],)
|
581 |
-
|
582 |
-
hidden_states = self.norm(hidden_states)
|
583 |
-
|
584 |
-
# add hidden states from the last decoder layer
|
585 |
-
if output_hidden_states:
|
586 |
-
all_hidden_states += (hidden_states,)
|
587 |
-
|
588 |
-
next_cache = next_decoder_cache if use_cache else None
|
589 |
-
if not return_dict:
|
590 |
-
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
591 |
-
return BaseModelOutputWithPast(
|
592 |
-
last_hidden_state=hidden_states,
|
593 |
-
past_key_values=next_cache,
|
594 |
-
hidden_states=all_hidden_states,
|
595 |
-
attentions=all_self_attns,
|
596 |
-
)
|
597 |
-
|
598 |
-
|
599 |
-
class LlamaForCausalLM(LlamaPreTrainedModel):
|
600 |
-
def __init__(self, config):
|
601 |
-
super().__init__(config)
|
602 |
-
self.model = LlamaModel(config)
|
603 |
-
|
604 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
605 |
-
|
606 |
-
# Initialize weights and apply final processing
|
607 |
-
self.post_init()
|
608 |
-
|
609 |
-
def get_input_embeddings(self):
|
610 |
-
return self.model.embed_tokens
|
611 |
-
|
612 |
-
def set_input_embeddings(self, value):
|
613 |
-
self.model.embed_tokens = value
|
614 |
-
|
615 |
-
def get_output_embeddings(self):
|
616 |
-
return self.lm_head
|
617 |
-
|
618 |
-
def set_output_embeddings(self, new_embeddings):
|
619 |
-
self.lm_head = new_embeddings
|
620 |
-
|
621 |
-
def set_decoder(self, decoder):
|
622 |
-
self.model = decoder
|
623 |
-
|
624 |
-
def get_decoder(self):
|
625 |
-
return self.model
|
626 |
|
627 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
628 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
@@ -633,12 +22,12 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
633 |
position_ids: Optional[torch.LongTensor] = None,
|
634 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
635 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
636 |
-
query_embeds: Optional[torch.FloatTensor] = None,
|
637 |
labels: Optional[torch.LongTensor] = None,
|
638 |
use_cache: Optional[bool] = None,
|
639 |
output_attentions: Optional[bool] = None,
|
640 |
output_hidden_states: Optional[bool] = None,
|
641 |
return_dict: Optional[bool] = None,
|
|
|
642 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
643 |
r"""
|
644 |
Args:
|
@@ -657,13 +46,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
657 |
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
658 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
659 |
|
660 |
-
>>> prompt = "Hey, are you
|
661 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
662 |
|
663 |
>>> # Generate
|
664 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
665 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
666 |
-
"Hey, are you
|
667 |
```"""
|
668 |
|
669 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
@@ -679,7 +68,6 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
679 |
position_ids=position_ids,
|
680 |
past_key_values=past_key_values,
|
681 |
inputs_embeds=inputs_embeds,
|
682 |
-
query_embeds=query_embeds,
|
683 |
use_cache=use_cache,
|
684 |
output_attentions=output_attentions,
|
685 |
output_hidden_states=output_hidden_states,
|
@@ -687,7 +75,13 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
687 |
)
|
688 |
|
689 |
hidden_states = outputs[0]
|
690 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
691 |
|
692 |
loss = None
|
693 |
if labels is not None:
|
@@ -695,12 +89,14 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
695 |
shift_logits = logits[..., :-1, :].contiguous()
|
696 |
shift_labels = labels[..., 1:].contiguous()
|
697 |
# Flatten the tokens
|
698 |
-
loss_fct = CrossEntropyLoss()
|
699 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
700 |
shift_labels = shift_labels.view(-1)
|
701 |
# Enable model parallelism
|
702 |
shift_labels = shift_labels.to(shift_logits.device)
|
703 |
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
|
704 |
|
705 |
if not return_dict:
|
706 |
output = (logits,) + outputs[1:]
|
@@ -713,43 +109,3 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|
713 |
hidden_states=outputs.hidden_states,
|
714 |
attentions=outputs.attentions,
|
715 |
)
|
716 |
-
|
717 |
-
def prepare_inputs_for_generation(
|
718 |
-
self, input_ids, query_embeds=None, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
719 |
-
):
|
720 |
-
if past_key_values:
|
721 |
-
input_ids = input_ids[:, -1:]
|
722 |
-
|
723 |
-
position_ids = kwargs.get("position_ids", None)
|
724 |
-
if attention_mask is not None and position_ids is None:
|
725 |
-
# create position_ids on the fly for batch generation
|
726 |
-
position_ids = attention_mask.long().cumsum(-1) - 1
|
727 |
-
position_ids.masked_fill_(attention_mask == 0, 1)
|
728 |
-
if past_key_values:
|
729 |
-
position_ids = position_ids[:, -1].unsqueeze(-1)
|
730 |
-
query_embeds = None
|
731 |
-
|
732 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
733 |
-
if inputs_embeds is not None and past_key_values is None:
|
734 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
735 |
-
else:
|
736 |
-
model_inputs = {"input_ids": input_ids}
|
737 |
-
|
738 |
-
model_inputs.update(
|
739 |
-
{
|
740 |
-
"position_ids": position_ids,
|
741 |
-
"query_embeds": query_embeds,
|
742 |
-
"past_key_values": past_key_values,
|
743 |
-
"use_cache": kwargs.get("use_cache"),
|
744 |
-
"attention_mask": attention_mask,
|
745 |
-
}
|
746 |
-
)
|
747 |
-
return model_inputs
|
748 |
-
|
749 |
-
@staticmethod
|
750 |
-
def _reorder_cache(past_key_values, beam_idx):
|
751 |
-
reordered_past = ()
|
752 |
-
for layer_past in past_key_values:
|
753 |
-
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
754 |
-
return reordered_past
|
755 |
-
|
|
|
|
|
|
|
|
|
1 |
import math
|
2 |
from typing import List, Optional, Tuple, Union
|
3 |
|
4 |
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.nn import CrossEntropyLoss
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
from transformers.utils import add_start_docstrings_to_model_forward, replace_return_docstrings
|
9 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
10 |
+
from transformers.models.llama.modeling_llama import LLAMA_INPUTS_DOCSTRING, _CONFIG_FOR_DOC
|
11 |
+
from transformers.models.llama.modeling_llama import LlamaForCausalLM as LlamaForCausalLMOrig
|
|
|
12 |
|
|
|
|
|
13 |
|
14 |
+
class LlamaForCausalLM(LlamaForCausalLMOrig):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
17 |
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
|
|
22 |
position_ids: Optional[torch.LongTensor] = None,
|
23 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
24 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
25 |
labels: Optional[torch.LongTensor] = None,
|
26 |
use_cache: Optional[bool] = None,
|
27 |
output_attentions: Optional[bool] = None,
|
28 |
output_hidden_states: Optional[bool] = None,
|
29 |
return_dict: Optional[bool] = None,
|
30 |
+
reduction: Optional[str] = "mean",
|
31 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
32 |
r"""
|
33 |
Args:
|
|
|
46 |
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
47 |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
48 |
|
49 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
50 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
51 |
|
52 |
>>> # Generate
|
53 |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
54 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
55 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
56 |
```"""
|
57 |
|
58 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
68 |
position_ids=position_ids,
|
69 |
past_key_values=past_key_values,
|
70 |
inputs_embeds=inputs_embeds,
|
|
|
71 |
use_cache=use_cache,
|
72 |
output_attentions=output_attentions,
|
73 |
output_hidden_states=output_hidden_states,
|
|
|
75 |
)
|
76 |
|
77 |
hidden_states = outputs[0]
|
78 |
+
if self.config.pretraining_tp > 1:
|
79 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
80 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
81 |
+
logits = torch.cat(logits, dim=-1)
|
82 |
+
else:
|
83 |
+
logits = self.lm_head(hidden_states)
|
84 |
+
logits = logits.float()
|
85 |
|
86 |
loss = None
|
87 |
if labels is not None:
|
|
|
89 |
shift_logits = logits[..., :-1, :].contiguous()
|
90 |
shift_labels = labels[..., 1:].contiguous()
|
91 |
# Flatten the tokens
|
92 |
+
loss_fct = CrossEntropyLoss(reduction=reduction)
|
93 |
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
94 |
shift_labels = shift_labels.view(-1)
|
95 |
# Enable model parallelism
|
96 |
shift_labels = shift_labels.to(shift_logits.device)
|
97 |
loss = loss_fct(shift_logits, shift_labels)
|
98 |
+
if reduction == "none":
|
99 |
+
loss = loss.view(logits.size(0), -1).mean(1)
|
100 |
|
101 |
if not return_dict:
|
102 |
output = (logits,) + outputs[1:]
|
|
|
109 |
hidden_states=outputs.hidden_states,
|
110 |
attentions=outputs.attentions,
|
111 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
minigpt4/runners/runner_base.py
CHANGED
@@ -627,14 +627,14 @@ class RunnerBase:
|
|
627 |
cached_file = download_cached_file(
|
628 |
url_or_filename, check_hash=False, progress=True
|
629 |
)
|
630 |
-
checkpoint = torch.load(cached_file, map_location=self.device
|
631 |
elif os.path.isfile(url_or_filename):
|
632 |
-
checkpoint = torch.load(url_or_filename, map_location=self.device
|
633 |
else:
|
634 |
raise RuntimeError("checkpoint url or path is invalid")
|
635 |
|
636 |
state_dict = checkpoint["model"]
|
637 |
-
self.unwrap_dist_model(self.model).load_state_dict(state_dict)
|
638 |
|
639 |
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
640 |
if self.scaler and "scaler" in checkpoint:
|
|
|
627 |
cached_file = download_cached_file(
|
628 |
url_or_filename, check_hash=False, progress=True
|
629 |
)
|
630 |
+
checkpoint = torch.load(cached_file, map_location=self.device)
|
631 |
elif os.path.isfile(url_or_filename):
|
632 |
+
checkpoint = torch.load(url_or_filename, map_location=self.device)
|
633 |
else:
|
634 |
raise RuntimeError("checkpoint url or path is invalid")
|
635 |
|
636 |
state_dict = checkpoint["model"]
|
637 |
+
self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
|
638 |
|
639 |
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
640 |
if self.scaler and "scaler" in checkpoint:
|