Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import webvtt | |
import os | |
import cv2 | |
from minigpt4.common.eval_utils import prepare_texts, init_model, eval_parser, eval_bleu,eval_cider,chat_gpt_eval | |
from minigpt4.conversation.conversation import CONV_VISION | |
from torchvision import transforms | |
import json | |
from tqdm import tqdm | |
import soundfile as sf | |
import argparse | |
import moviepy.editor as mp | |
import gradio as gr | |
from pytubefix import YouTube | |
import shutil | |
from PIL import Image | |
from moviepy.editor import VideoFileClip | |
from theme import minigptlv_style, custom_css,text_css | |
from huggingface_hub import login, hf_hub_download | |
hf_token = os.environ.get('HF_TKN') | |
login(token=hf_token) | |
folder_name = "checkpoints" | |
if not os.path.exists(folder_name): | |
os.makedirs(folder_name) | |
hf_hub_download( | |
repo_id='Vision-CAIR/MiniGPT4-Video', | |
subfolder='checkpoints', | |
filename='video_llama_checkpoint_last.pth', | |
local_dir='checkpoints', | |
local_dir_use_symlinks=False, | |
) | |
import spaces | |
def create_video_grid(images, rows, cols,save_path): | |
image_width, image_height = images[0].size | |
grid_width = cols * image_width | |
grid_height = rows * image_height | |
new_image = Image.new("RGB", (grid_width, grid_height)) | |
for i in range(rows): | |
for j in range(cols): | |
index = i * cols + j | |
if index < len(images): | |
image = images[index] | |
x_offset = j * image_width | |
y_offset = i * image_height | |
new_image.paste(image, (x_offset, y_offset)) | |
# new_image.save(save_path) | |
return new_image | |
def prepare_input(vis_processor,video_path,subtitle_path,instruction): | |
cap = cv2.VideoCapture(video_path) | |
if subtitle_path is not None: | |
# Load the VTT subtitle file | |
vtt_file = webvtt.read(subtitle_path) | |
print("subtitle loaded successfully") | |
clip = VideoFileClip(video_path) | |
total_num_frames = int(clip.duration * clip.fps) | |
# print("Video duration = ",clip.duration) | |
clip.close() | |
else : | |
# calculate the total number of frames in the video using opencv | |
total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if "mistral" in args.ckpt : | |
max_images_length=90 | |
max_sub_len = 800 | |
else: | |
max_images_length = 45 | |
max_sub_len = 400 | |
images = [] | |
frame_count = 0 | |
sampling_interval = int(total_num_frames / max_images_length) | |
if sampling_interval == 0: | |
sampling_interval = 1 | |
img_placeholder = "" | |
subtitle_text_in_interval = "" | |
history_subtitles = {} | |
# raw_frames=[] | |
number_of_words=0 | |
transform=transforms.Compose([ | |
transforms.ToPILImage(), | |
]) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle | |
# we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds | |
if subtitle_path is not None: | |
for subtitle in vtt_file: | |
sub=subtitle.text.replace('\n',' ') | |
if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval: | |
if not history_subtitles.get(sub,False): | |
subtitle_text_in_interval+=sub+" " | |
history_subtitles[sub]=True | |
break | |
if frame_count % sampling_interval == 0: | |
# raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB))) | |
frame = transform(frame[:,:,::-1]) # convert to RGB | |
frame = vis_processor(frame) | |
images.append(frame) | |
img_placeholder += '<Img><ImageHere>' | |
if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len: | |
img_placeholder+=f'<Cap>{subtitle_text_in_interval}' | |
number_of_words+=len(subtitle_text_in_interval.split(' ')) | |
subtitle_text_in_interval = "" | |
frame_count += 1 | |
if len(images) >= max_images_length: | |
break | |
cap.release() | |
cv2.destroyAllWindows() | |
if len(images) == 0: | |
# skip the video if no frame is extracted | |
return None,None | |
# video_grid_image=create_video_grid(raw_frames,8,len(raw_frames)//8,"concatenated.jpg") | |
images = torch.stack(images) | |
instruction = img_placeholder + '\n' + instruction | |
return images,instruction | |
def extract_audio(video_path, audio_path): | |
video_clip = mp.VideoFileClip(video_path) | |
audio_clip = video_clip.audio | |
audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k") | |
def generate_subtitles(video_path): | |
video_id=video_path.split('/')[-1].split('.')[0] | |
audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3' | |
os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True) | |
if existed_subtitles.get(video_id,False): | |
return f"workspace/inference_subtitles/{video_id}"+'.vtt' | |
try: | |
extract_audio(video_path,audio_path) | |
print("successfully extracted") | |
os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles") | |
# remove the audio file | |
os.system(f"rm {audio_path}") | |
print("subtitle successfully generated") | |
return f"workspace/inference_subtitles/{video_id}"+'.vtt' | |
except Exception as e: | |
print("error",e) | |
print("error",video_path) | |
return None | |
def run (video_path,instruction,model,vis_processor,gen_subtitles=True): | |
if gen_subtitles: | |
subtitle_path=generate_subtitles(video_path) | |
else : | |
subtitle_path=None | |
prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction) | |
if prepared_images is None: | |
return "Video cann't be open ,check the video path again" | |
length=len(prepared_images) | |
prepared_images=prepared_images.unsqueeze(0) | |
conv = CONV_VISION.copy() | |
conv.system = "" | |
# if you want to make conversation comment the 2 lines above and make the conv is global variable | |
conv.append_message(conv.roles[0], prepared_instruction) | |
conv.append_message(conv.roles[1], None) | |
prompt = [conv.get_prompt()] | |
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=2) | |
# remove the subtitle file and the video file | |
if subtitle_path: | |
os.system(f"rm {subtitle_path}") | |
#if video_path.split('.')[-1] == 'mp4' or video_path.split('.')[-1] == 'mkv' or video_path.split('.')[-1] == 'avi': | |
# os.system(f"rm {video_path}") | |
return answers[0] | |
def run_single_image (image_path,instruction,model,vis_processor): | |
image=Image.open(image_path) | |
image = vis_processor(image) | |
prepared_images=torch.stack([image]) | |
prepared_instruction='<Img><ImageHere>'+instruction | |
length=len(prepared_images) | |
prepared_images=prepared_images.unsqueeze(0) | |
conv = CONV_VISION.copy() | |
conv.system = "" | |
# if you want to make conversation comment the 2 lines above and make the conv is global variable | |
conv.append_message(conv.roles[0], prepared_instruction) | |
conv.append_message(conv.roles[1], None) | |
prompt = [conv.get_prompt()] | |
answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=False, lengths=[length],num_beams=1) | |
return answers[0] | |
def download_video(youtube_url, download_finish): | |
video_id=youtube_url.split('v=')[-1].split('&')[0] | |
# Create a YouTube object | |
youtube = YouTube(youtube_url) | |
# Get the best available video stream | |
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() | |
# if has_subtitles: | |
# Download the video to the workspace folder | |
print('Downloading video') | |
video_stream.download(output_path="workspace",filename=f"{video_id}.mp4") | |
print('Video downloaded successfully') | |
processed_video_path= f"workspace/{video_id}.mp4" | |
download_finish = gr.State(value=True) | |
return processed_video_path, download_finish | |
def get_video_url(url,has_subtitles): | |
# get video id from url | |
video_id=url.split('v=')[-1].split('&')[0] | |
# Create a YouTube object | |
youtube = YouTube(url) | |
# Get the best available video stream | |
video_stream = youtube.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first() | |
# if has_subtitles: | |
# Download the video to the workspace folder | |
print('Downloading video') | |
video_stream.download(output_path="workspace",filename=f"{video_id}.mp4") | |
print('Video downloaded successfully') | |
return f"workspace/{video_id}.mp4" | |
# else: | |
# return video_stream.url | |
def get_arguments(): | |
parser = argparse.ArgumentParser(description="Inference parameters") | |
parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml") | |
parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint") | |
parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens") | |
parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model") | |
parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha") | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
return parser.parse_args() | |
args=get_arguments() | |
model, vis_processor = init_model(args) | |
conv = CONV_VISION.copy() | |
conv.system = "" | |
inference_subtitles_folder="workspace/inference_subtitles" | |
os.makedirs(inference_subtitles_folder,exist_ok=True) | |
existed_subtitles={} | |
for sub in os.listdir(inference_subtitles_folder): | |
existed_subtitles[sub.split('.')[0]]=True | |
def gradio_demo_local(video_path,has_sub,instruction): | |
pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub) | |
return pred | |
def gradio_demo_youtube(youtube_url,has_sub,instruction): | |
video_path=get_video_url(youtube_url,has_sub) | |
pred=run(video_path,instruction,model,vis_processor,gen_subtitles=has_sub) | |
return pred | |
def use_example(url,has_sub_1,q): | |
# set the youtube link and the question with the example values | |
youtube_link.value=url | |
has_subtitles.value=has_sub_1 | |
question.value=q | |
title = """<h1 align="center">MiniGPT4-video 🎞️🍿</h1>""" | |
description = """<h5>This is the demo of MiniGPT4-video Model.</h5>""" | |
project_page = """<p><a href='https://vision-cair.github.io/MiniGPT4-video/'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>""" | |
code_link="""<p><a href='https://github.com/Vision-CAIR/MiniGPT4-video'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p>""" | |
paper_link="""<p><a href=''><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p>""" | |
#video_path="" | |
with gr.Blocks(title="MiniGPT4-video 🎞️🍿",css=text_css ) as demo : | |
# with gr.Row(): | |
# with gr.Column(scale=2): | |
gr.Markdown(title) | |
gr.Markdown(description) | |
# gr.Image("repo_imgs/Designer_2_new.jpeg",scale=1,show_download_button=False,show_label=False) | |
# with gr.Row(): | |
# gr.Markdown(project_page) | |
# gr.Markdown(code_link) | |
# gr.Markdown(paper_link) | |
with gr.Tab("Local videos"): | |
# local_interface=gr.Interface( | |
# fn=gradio_demo_local, | |
# inputs=[gr.Video(sources=["upload"]),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")], | |
# outputs=["text", | |
# ], | |
# # title="<h2>Local videos</h2>", | |
# description="Upload your videos with length from one to two minutes", | |
# examples=[ | |
# ["example_videos/sample_demo_1.mp4", True, "Why is this video funny"], | |
# ["example_videos/sample_demo_2.mp4", False, "Generate a creative advertisement for this product."], | |
# ["example_videos/sample_demo_3.mp4", False, "Write a poem inspired by this video."], | |
# ], | |
# css=custom_css, # Apply custom CSS | |
# allow_flagging='auto' | |
# ) | |
with gr.Row(): | |
with gr.Column(): | |
video_player_local = gr.Video(sources=["upload"]) | |
question_local = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?") | |
has_subtitles_local = gr.Checkbox(label="Use subtitles", value=True) | |
process_button_local = gr.Button("Answer the Question (QA)") | |
with gr.Column(): | |
answer_local=gr.Text("Answer will be here",label="MiniGPT4-video Answer") | |
process_button_local.click(fn=gradio_demo_local, inputs=[video_player_local, has_subtitles_local, question_local], outputs=[answer_local]) | |
with gr.Tab("Youtube videos"): | |
# youtube_interface=gr.Interface( | |
# fn=gradio_demo_youtube, | |
# inputs=[gr.Textbox(label="Enter the youtube link"),gr.Checkbox(label='Use subtitles'),gr.Textbox(label="Write any Question")], | |
# outputs=["text", | |
# ], | |
# # title="<h2>YouTube videos</h2>", | |
# description="Videos length should be from one to two minutes", | |
# examples=[ | |
# ["https://www.youtube.com/watch?v=8kyg5u6o21k", True, "What happens in this video?"], | |
# ["https://www.youtube.com/watch?v=zWfX5jeF6k4", True, "what is the main idea in this video?"], | |
# ["https://www.youtube.com/watch?v=W5PRZuaQ3VM", True, "Inspired by this video content suggest a creative advertisement about the same content."], | |
# ["https://www.youtube.com/watch?v=W8jcenQDXYg", True, "Describe what happens in this video."], | |
# ["https://www.youtube.com/watch?v=u3ybWiEUaUU", True, "what is creative in this video ?"], | |
# ["https://www.youtube.com/watch?v=nEwfSZfz7pw", True, "What Monica did in this video ?"], | |
# ], | |
# css=custom_css, # Apply custom CSS | |
# allow_flagging='auto', | |
# ) | |
with gr.Row(): | |
with gr.Column(): | |
youtube_link = gr.Textbox(label="Enter the youtube link", placeholder="Paste YouTube URL here") | |
video_player = gr.Video(autoplay=False) | |
download_finish = gr.State(value=False) | |
youtube_link.change( | |
fn=download_video, | |
inputs=[youtube_link, download_finish], | |
outputs=[video_player, download_finish] | |
) | |
question = gr.Textbox(label="Your Question", placeholder="Default: What's this video talking about?") | |
has_subtitles = gr.Checkbox(label="Use subtitles", value=True) | |
process_button = gr.Button("Answer the Question (QA)") | |
with gr.Column(): | |
answer=gr.Text("Answer will be here",label="MiniGPT4-video Answer") | |
process_button.click(fn=gradio_demo_youtube, inputs=[youtube_link, has_subtitles, question], outputs=[answer]) | |
## Add examples to make the demo more interactive and user-friendly | |
# with gr.Row(): | |
# url_1=gr.Text("https://www.youtube.com/watch?v=8kyg5u6o21k") | |
# has_sub_1=True | |
# q_1=gr.Text("What happens in this video?") | |
# # add button to change the youtube link and the question with the example values | |
# use_example_1_btn=gr.Button("Use this example") | |
# use_example_1_btn.click(use_example,inputs=[url_1,has_sub_1,q_1]) | |
if __name__ == "__main__": | |
demo.queue(max_size=10).launch(share=False,show_error=True, show_api=False) | |