Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
from dataclasses import dataclass | |
from typing import Optional | |
import torch | |
from transformers.modeling_outputs import ( | |
ModelOutput, | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
CausalLMOutputWithCrossAttentions, | |
) | |
class BlipSimilarity(ModelOutput): | |
sim_i2t: torch.FloatTensor = None | |
sim_t2i: torch.FloatTensor = None | |
sim_i2t_m: Optional[torch.FloatTensor] = None | |
sim_t2i_m: Optional[torch.FloatTensor] = None | |
sim_i2t_targets: Optional[torch.FloatTensor] = None | |
sim_t2i_targets: Optional[torch.FloatTensor] = None | |
class BlipIntermediateOutput(ModelOutput): | |
""" | |
Data class for intermediate outputs of BLIP models. | |
image_embeds (torch.FloatTensor): Image embeddings, shape (batch_size, num_patches, embed_dim). | |
text_embeds (torch.FloatTensor): Text embeddings, shape (batch_size, seq_len, embed_dim). | |
image_embeds_m (torch.FloatTensor): Image embeddings from momentum visual encoder, shape (batch_size, num_patches, embed_dim). | |
text_embeds_m (torch.FloatTensor): Text embeddings from momentum text encoder, shape (batch_size, seq_len, embed_dim). | |
encoder_output (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder. | |
encoder_output_neg (BaseModelOutputWithPoolingAndCrossAttentions): output from the image-grounded text encoder for negative pairs. | |
decoder_output (CausalLMOutputWithCrossAttentions): output from the image-grounded text decoder. | |
decoder_labels (torch.LongTensor): labels for the captioning loss. | |
itm_logits (torch.FloatTensor): logits for the image-text matching loss, shape (batch_size * 3, 2). | |
itm_labels (torch.LongTensor): labels for the image-text matching loss, shape (batch_size * 3,) | |
""" | |
# uni-modal features | |
image_embeds: torch.FloatTensor = None | |
text_embeds: Optional[torch.FloatTensor] = None | |
image_embeds_m: Optional[torch.FloatTensor] = None | |
text_embeds_m: Optional[torch.FloatTensor] = None | |
# intermediate outputs of multimodal encoder | |
encoder_output: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None | |
encoder_output_neg: Optional[BaseModelOutputWithPoolingAndCrossAttentions] = None | |
itm_logits: Optional[torch.FloatTensor] = None | |
itm_labels: Optional[torch.LongTensor] = None | |
# intermediate outputs of multimodal decoder | |
decoder_output: Optional[CausalLMOutputWithCrossAttentions] = None | |
decoder_labels: Optional[torch.LongTensor] = None | |
class BlipOutput(ModelOutput): | |
# some finetuned models (e.g. BlipVQA) do not compute similarity, thus optional. | |
sims: Optional[BlipSimilarity] = None | |
intermediate_output: BlipIntermediateOutput = None | |
loss: Optional[torch.FloatTensor] = None | |
loss_itc: Optional[torch.FloatTensor] = None | |
loss_itm: Optional[torch.FloatTensor] = None | |
loss_lm: Optional[torch.FloatTensor] = None | |
class BlipOutputFeatures(ModelOutput): | |
""" | |
Data class of features from BlipFeatureExtractor. | |
Args: | |
image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional | |
image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional | |
text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional | |
text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional | |
The first embedding or feature is for the [CLS] token. | |
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space. | |
""" | |
image_embeds: Optional[torch.FloatTensor] = None | |
image_embeds_proj: Optional[torch.FloatTensor] = None | |
text_embeds: Optional[torch.FloatTensor] = None | |
text_embeds_proj: Optional[torch.FloatTensor] = None | |
multimodal_embeds: Optional[torch.FloatTensor] = None | |