MiniGPT4-video / minigpt4 /models /mini_gpt4_llama_v2.py
fffiloni's picture
Upload 164 files
2ada650 verified
raw
history blame
36.2 kB
import logging
import random
import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn
from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
# from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM as llm_model
# minigpt4.models.modeling_mistral import MistralForCausalLM as llm_model
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub
from transformers import LlamaTokenizer
from transformers import BitsAndBytesConfig
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
import time
import numpy as np
from minigpt4.models import policies
@registry.register_model("mini_gpt4_llama_v2")
class MiniGPT4_llama_v2(Blip2Base):
"""
BLIP2 GPT-LLAMA model.
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain_vicuna": "configs/models/minigpt4.yaml",
}
def __init__(
self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
llama_model="",
prompt_path="",
prompt_template="",
max_txt_len=32,
low_resource=False, # use 8 bit and put vit in cpu
end_sym='\n',
lora_r = 8,
lora_target_modules = ["q_proj","v_proj"],
lora_alpha=16,
# lora_r = 16,
# lora_target_modules = ["q_proj","v_proj","v_proj"],
lora_dropout= 0.05,
ckpt_path = "",
system_prompt= False,
chat_template=False,
token_pooling=True,
use_grad_checkpoint_llm=False,
max_context_len=3800,
remove_template = False,
):
super().__init__()
if "Mistral" in llama_model:
from minigpt4.models.modeling_mistral import MistralForCausalLM as llm_model
print("Mistral model")
self.model_type = "Mistral"
else:
from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM as llm_model
print("Llama model")
self.model_type = "Llama"
self.tokenizer = self.init_tokenizer()
self.low_resource = low_resource
self.token_pooling = token_pooling
self.remove_template = remove_template
print("token pooling", self.token_pooling)
self.use_grad_checkpoint_llm = use_grad_checkpoint_llm
self.max_context_len = max_context_len
self.chat_template = chat_template
# print('Loading VIT')
# self.visual_encoder, self.ln_vision = self.init_vision_encoder(
# vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
# )
if freeze_vit:
# vit_precision="fp32"
print("vit precision", vit_precision)
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
for name, param in self.ln_vision.named_parameters():
param.requires_grad = False
self.ln_vision = self.ln_vision.eval()
self.ln_vision.train = disabled_train
logging.info("freeze vision encoder")
print("freeze the vision encoder")
else:
vit_precision="fp32"
self.visual_encoder, self.ln_vision = self.init_vision_encoder(
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
)
print("unfreeze the vision encoder")
print('Loading VIT Done')
# print("visual encoder shape", self.visual_encoder.pos_embed.shape)
# assert False
print('Loading LLAMA')
self.B_SYS, self.E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model,use_fast=False) #
self.llama_tokenizer.pad_token = "$$"
self.system_prompt = system_prompt
print("self.low_resource",self.low_resource)
if self.low_resource:
self.llama_model = llm_model.from_pretrained(
llama_model,
torch_dtype=torch.float16,
# torch_dtype = torch.bfloat16,
load_in_8bit=True,
# device_map = "balanced"
# device_map="auto",
device_map={'':torch.cuda.current_device()},
# device_map={'':0}
)
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_use_double_quant=True,
# bnb_4bit_quant_type="nf4",
# bnb_4bit_compute_dtype=torch.bfloat16,
# )
# self.llama_model = llm_model.from_pretrained(
# llama_model,
# torch_dtype=torch.bfloat16,
# device_map={'':torch.cuda.current_device()},
# quantization_config=bnb_config,
# )
else:
self.llama_model = llm_model.from_pretrained(
llama_model,
torch_dtype=torch.float16,
)
# self.llama_model.resize_token_embeddings(len(self.llama_tokenizer))
self.llama_model = prepare_model_for_int8_training(self.llama_model)
loraconfig = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM"
)
self.llama_model = get_peft_model(self.llama_model, loraconfig)
# if ckpt_path:
# print('load the llm under lora')
# ckpt = torch.load(ckpt_path)
# set_peft_model_state_dict(self.llama_model,ckpt)
self.llama_model.print_trainable_parameters()
if self.use_grad_checkpoint_llm:
self.llama_model.gradient_checkpointing_enable()
# if not self.low_resource:
# for name, param in self.llama_model.named_parameters():
# if "embed_token" in name:
# param.data = param.data.float()
# param.requires_grad = True
print('Loading LLAMA Done')
if self.token_pooling:
self.llama_proj = nn.Linear(
1408*4, self.llama_model.config.hidden_size
)
else:
self.llama_proj = nn.Linear(
1408, self.llama_model.config.hidden_size
)
self.max_txt_len = max_txt_len
self.end_sym = end_sym
if prompt_path:
with open(prompt_path, 'r') as f:
raw_prompts = f.read().splitlines()
filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
print('Load {} training prompts'.format(len(self.prompt_list)))
print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
else:
self.prompt_list = []
def encode_img(self, image):
device = image.device
if len(image.shape) > 4:
image = image.reshape(-1, *image.shape[-3:]) # for video input flatten the batch and time dimension (4,50,3,224,224) -> (200,3,224,224)
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image)).to(device) # (200,3,224,224) -> (200,257,1408)
image_embeds = image_embeds[:,1:,:] # remove the first token (CLS) (200,256,1408)
bs, pn, hs = image_embeds.shape
if self.token_pooling: # concat the each 4 tokens into one token (200,64,5632)
image_embeds = image_embeds.view(bs, int(pn/4), int(hs*4)) # (200,64,5632)
inputs_llama = self.llama_proj(image_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
return inputs_llama, atts_llama
def get_context_emb(self, prompt, img_list):
img_device = img_list[0].device
prompt_segs = prompt.split('<ImageHere>')
assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
seg_tokens = [
self.llama_tokenizer(
seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids # only add bos to the first seg
for i, seg in enumerate(prompt_segs)
]
seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]
mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]
mixed_embs = torch.cat(mixed_embs, dim=1)
# # truncate the length of tokens to the max context window
# mixed_embs_without_instruction = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair]
# mixed_embs_without_instruction=torch.cat(mixed_embs_without_instruction, dim=1)
# # check if the number of token in the second dimention is more than the max context window then truncate it
# context_window=self.max_context_len-seg_embs[-1].shape[1]
# if mixed_embs_without_instruction.shape[1] > context_window :
# mixed_embs_without_instruction = mixed_embs_without_instruction[:, 0:context_window]
# mixed_embs=torch.cat([mixed_embs_without_instruction,seg_embs[-1]], dim=1)
# print("mixed_embs",mixed_embs.shape)
return mixed_embs
def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
if prompts is None or len(prompts) == 0:
# prompts is not provided, just return the original image embedding
return img_embeds, atts_img
elif img_embeds is None:
# prompt is provided but there is no image embedding. return the prompt embedding in right padding
self.llama_tokenizer.padding_side = "right"
prompt_tokens = self.llama_tokenizer(
prompts,
return_tensors="pt",
padding="longest",
add_special_tokens=False
).to(self.device)
prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
atts_prompt = prompt_tokens.attention_mask
return prompt_embeds, atts_prompt
else:
# return the multi-modal embedding in right padding
emb_lists = []
for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
pn = each_img_embed.shape[-2]
if lengths is not None:
each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
each_img_embed = each_img_embed[:lengths[idx] * pn]
p_segs = each_prompt.split('<ImageHere>')
interleave_emb = []
for idx, seg in enumerate(p_segs[:-1]):
p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
# print("p_embed device",p_tokens.input_ids.device)
# print("p_tokens",img_embeds.device)
# print("emb layer", list(self.llama_model.base_model.model.model.embed_tokens.parameters())[0].device)
p_embed = self.embed_tokens(p_tokens.input_ids)
# print("model device",self.llama_model.get_device())
interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1))
wrapped_emb = torch.cat(interleave_emb, dim=1)
p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
p_embed = self.embed_tokens(p_tokens.input_ids)
wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1)
emb_lists.append(wrapped_emb)
emb_lens = [emb.shape[1] for emb in emb_lists]
pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))
# max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
max_length = self.max_context_len
wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)
for i, emb in enumerate(emb_lists):
length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
wrapped_embs[i, :length] = emb[:, :length]
wrapped_atts[i, :length] = 1
return wrapped_embs, wrapped_atts
def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
"""
Concatenate the batched input embedding and batched output embedding together.
Both the input and the output embedding should be right padded.
"""
input_lens = []
cat_embs = []
cat_atts = []
for i in range(input_embs.size(0)):
input_len = input_atts[i].sum()
input_lens.append(input_len)
cat_embs.append(
torch.cat([
input_embs[i][:input_len],
output_embs[i],
input_embs[i][input_len:]
])
)
cat_atts.append(
torch.cat([
input_atts[i][:input_len],
output_atts[i],
input_atts[i][input_len:]
])
)
# print('===================================')
# print('check input emb: ', input_embs[i][this_input_ones-2:this_input_ones])
# print('check pad emb: ', input_embs[i][this_input_ones:this_input_ones+2])
# print('check out emb: ', output_embs[i][:2])
# print('check out pad emb: ', output_embs[i][-2:])
# print('+++++++++++++++++++++++++++++++++++')
#
# print('check attn before: ', input_atts[i][:this_input_ones])
# print('check attn after: ', input_atts[i][this_input_ones:])
# print('check attn gt before: ', output_atts[i][:3])
# print('check attn gt after: ', output_atts[i][-3:])
cat_embs = torch.stack(cat_embs)
cat_atts = torch.stack(cat_atts)
return cat_embs, cat_atts, input_lens
def get_conv_emb(self, conv_q, conv_a, conv_img):
"""concatenate conversation and make sure the model is only trained to regress the answer"""
regress_embs_list = []
targets_list = []
batch_size = len(conv_q)
for batch_idx in range(batch_size):
questions, answers = conv_q[batch_idx], conv_a[batch_idx]
assigned_imgs = conv_img[batch_idx]
questions = [self.prompt_wrap(
img_embeds=img,
atts_img=None,
prompts=[q],
lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)]
q_embs = [emb for emb, _ in questions]
answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers]
cur_emb = []
cur_target = []
for i in range(len(questions)):
cur_emb.append(q_embs[i])
cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100)
cur_emb.append(self.embed_tokens(answers[i].input_ids))
cur_target.append(answers[i].input_ids)
cur_emb = torch.cat(cur_emb, dim=1)
cur_target = torch.cat(cur_target, dim=1)
regress_embs_list.append(cur_emb)
targets_list.append(cur_target)
max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)
regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device)
regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device)
targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100
for batch_idx in range(batch_size):
cur_len = regress_embs_list[batch_idx].shape[1]
regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len]
regress_attn[batch_idx, :cur_len] = 1
targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]
return regress_embeds, regress_attn, targets
def preparing_embedding(self, samples):
def remove_special_tokens(data):
# if "instruction_input" in data:
data = [instruct.replace(" [caption]","") for instruct in data]
data = [instruct.replace(" [vqa]","") for instruct in data]
data = [instruct.replace(" [grounding]","") for instruct in data]
data = [instruct.replace(" [identify]","") for instruct in data]
data = [instruct.replace(" [refer]","") for instruct in data]
return data
### prepare input tokens
if 'image' in samples:
img_embeds, img_atts = self.encode_img(samples["image"])
# print("img_embeds shape",img_embeds.shape)
else:
img_embeds = img_atts = None
if 'conv_q' in samples:
# handeling conversation datasets
conv_q, conv_a = samples['conv_q'], samples['conv_a']
connect_sym = samples['connect_sym'][0]
conv_q = [q.split(connect_sym)for q in conv_q]
conv_a = [a.split(connect_sym) for a in conv_a]
conv_img = assign_imgs(conv_q, img_embeds)
if self.chat_template:
conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q]
regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img)
cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0]
else:
instruction = samples["instruction_input"] if "instruction_input" in samples else None
# print("instruction before", instruction)
if self.remove_template:
instruction = remove_special_tokens(instruction)
# print("instruction after", instruction)
if self.chat_template:
instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction]
if 'length' in samples:
# the input is a image train (like videos)
bsz, pn, hs = img_embeds.shape
img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs) # (200,64,4096) -> (4,50,64,4096)
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
else:
cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)
### prepare target tokens
self.llama_tokenizer.padding_side = "right"
text = [t + self.end_sym for t in samples["answer"]]
regress_tokens = self.llama_tokenizer(
text,
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=self.max_txt_len,
add_special_tokens=False
).to(self.device)
regress_token_ids = regress_tokens.input_ids
regress_atts = regress_tokens.attention_mask
part_targets = regress_token_ids.masked_fill(
regress_token_ids == self.llama_tokenizer.pad_token_id, -100
)
regress_embeds = self.embed_tokens(regress_token_ids)
return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets
def forward(self, samples, reduction="mean"):
# prepare the embedding to condition and the embedding to regress
cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
self.preparing_embedding(samples)
# concat the embedding to condition and the embedding to regress
inputs_embeds, attention_mask, input_lens = \
self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)
print("inputs_embeds shape",inputs_embeds.shape)
print("cond_embeds shape",cond_embeds.shape)
print("regress_embeds shape",regress_embeds.shape)
# get bos token embedding
bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
bos_embeds = self.embed_tokens(bos)
bos_atts = attention_mask[:, :1]
# add bos token at the begining
inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
attention_mask = torch.cat([bos_atts, attention_mask], dim=1)
# print length of instruction_input and answer words
# for i in range (len(samples["instruction_input"])):
# print("instruction_input length",len(samples["instruction_input"][i].split(" ")))
# print("answer length",len(samples["answer"][i].split(" ")))
# ensemble the final targets
targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
dtype=torch.long).to(self.device).fill_(-100)
for i, target in enumerate(part_targets):
targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target # plus 1 for bos
print("targets shape",targets.shape)
with self.maybe_autocast():
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
return_dict=True,
labels=targets,
reduction=reduction
)
loss = outputs.loss
return {"loss": loss}
@torch.no_grad()
def generate(
self,
images,
texts,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
if img_embeds is None:
img_embeds, atts_img = self.encode_img(images.to(self.device))
else:
# Use images features from the input(4,45,64,5632)
img_embeds = img_embeds.reshape(-1, *img_embeds.shape[-2:])
img_embeds= img_embeds.to(self.device)
img_embeds = self.llama_proj(img_embeds) # project to llama input size (200,64,5632) -> (200,64,4096)
atts_img = torch.ones(img_embeds.size()[:-1], dtype=torch.long).to(self.device)
print("img_embeds shape",img_embeds.shape)
if lengths is not None:
image_lists = []
img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1])
for idx, img_embed in enumerate(img_embeds):
image_lists.append([img_embed[i][None] for i in range(lengths[idx])])
else:
image_lists = [[image_emb[None]] for image_emb in img_embeds]
assert len(texts) == len(image_lists)
batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
# print("inputs_embeds shape",embs.shape)
# print("attention_mask shape",attn_mask.shape)
# check if the input embedding tokens are in the range of the model cotext window (4096) and if it is not, then truncate it to the max context window
if self.model_type == "Llama":
context_window = 3700
else:
context_window = 7500
if embs.shape[1] > context_window:
embs = embs[:, -context_window:]
attn_mask = attn_mask[:, -context_window:]
print("inputs_embeds shape",embs.shape)
print("attention_mask shape",attn_mask.shape)
with self.maybe_autocast():
if return_video_temporal_features:
last_hidden_state = self.llama_model(
inputs_embeds=embs,
attention_mask=attn_mask,
output_hidden_states=True,
).hidden_states[-1]
video_temporal_features = last_hidden_state.mean(dim=1)
# normalize the temporal features using L2 norm
# video_temporal_features = video_temporal_features / video_temporal_features.norm(dim=-1, keepdim=True)
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
output_texts = output_texts.replace("<s>", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
if return_video_temporal_features:
return answers, video_temporal_features
else:
return answers
@torch.no_grad()
def generate_text_only(
self,
images,
seg_tokens,
use_nucleus_sampling=False,
num_beams=1,
max_new_tokens=20,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1,
temperature=1,
do_sample=False,
stop_words_ids=[2],
lengths=None,
return_video_temporal_features=False,
img_embeds=None,
):
'''
function for generate test use
'''
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])
# seg_tokens=[]
# for i, text in enumerate(texts):
# seg_tokens.append(self.llama_tokenizer(text, return_tensors="pt", add_special_tokens=True).to(self.device).input_ids)
batch_embs = [torch.cat([self.embed_tokens(seg_t)]) for seg_t in seg_tokens]
# seg_embs = torch.cat(seg_embs, dim=1)
# print("seg_embs shape",seg_embs.shape)
# batch_embs=[seg_embs]
batch_size = len(batch_embs)
max_len = max([emb.shape[1] for emb in batch_embs])
emb_dim = batch_embs[0].shape[2]
dtype = batch_embs[0].dtype
device = batch_embs[0].device
embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
for i, emb in enumerate(batch_embs):
emb_len = emb.shape[1]
embs[i, -emb_len:] = emb[0]
attn_mask[i, -emb_len:] = 1
print("inputs_embeds shape",embs.shape)
print("attention_mask shape",attn_mask.shape)
with self.maybe_autocast():
outputs = self.llama_model.generate(
inputs_embeds=embs,
attention_mask=attn_mask,
max_new_tokens=max_new_tokens,
num_beams=num_beams,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
# stopping_criteria=stopping_criteria,
)
answers = []
for output_token in outputs:
if output_token[0] == 0:
output_token = output_token[1:]
output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
output_texts = output_texts.split('</s>')[0] # remove the stop sign </s>
output_texts = output_texts.replace("<s>", "")
output_texts = output_texts.split(r'[/INST]')[-1].strip()
answers.append(output_texts)
return answers
@torch.no_grad()
def multi_select(self, images, texts, answers, num_cand=None):
all_losses = []
for answer in answers:
choice_samples = {
'image': images,
'instruction_input': texts,
'answer': answer
}
loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
all_losses.append(loss)
torch.cuda.empty_cache()
all_losses = torch.cat(all_losses, dim=-1)
if num_cand is not None:
for i in range(all_losses.shape[0]):
all_losses[i, num_cand[i]:] = 9999
output_class_ranks = torch.argsort(all_losses, dim=-1)
return output_class_ranks.tolist()
def predict_answers(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=128,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for open-ended VQA
'''
images = samples["image"].cuda()
texts = samples["instruction_input"]
output_text = self.generate(
images=images,
texts=texts,
num_beams=num_beams,
max_new_tokens=max_len,
min_length=min_len,
length_penalty=length_penalty
)
if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
output_text = self._lemmatize(output_text)
return output_text
def predict_class(
self,
samples,
num_beams=5,
inference_method="generate",
max_len=10,
min_len=1,
num_ans_candidates=5,
answer_list=None,
prompt="",
length_penalty=0,
**kwargs
):
'''
function for multi-choice VQA
'''
image = samples["image"].cuda()
instruction = samples['instruction_input']
answers = samples["choices"]
num_cand = samples["num_choices"]
ranks = self.multi_select(image, instruction, answers, num_cand)
pred_ans = []
for i, rank in enumerate(ranks):
pred = answers[rank[0]][i]
pred_ans.append(pred)
return pred_ans
def embed_tokens(self, token_ids):
try:
embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
except AttributeError:
embeds = self.llama_model.model.embed_tokens(token_ids)
return embeds
@classmethod
def from_config(cls, cfg):
vit_model = cfg.get("vit_model", "eva_clip_g")
q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
img_size = cfg.get("image_size")
num_query_token = cfg.get("num_query_token")
llama_model = cfg.get("llama_model")
drop_path_rate = cfg.get("drop_path_rate", 0)
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
vit_precision = cfg.get("vit_precision", "fp16")
freeze_vit = cfg.get("freeze_vit", True)
freeze_qformer = cfg.get("freeze_qformer", True)
low_resource = cfg.get("low_resource", False)
prompt_path = cfg.get("prompt_path", "")
prompt_template = cfg.get("prompt_template", "")
max_txt_len = cfg.get("max_txt_len", 300)
end_sym = cfg.get("end_sym", '\n')
lora_r = cfg.get("lora_r",64)
lora_alpha = cfg.get("lora_alpha",16)
chat_template = cfg.get("chat_template",False)
system_prompt = cfg.get("system_prompt", False)
token_pooling = cfg.get("token_pooling",True)
use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False)
max_context_len = cfg.get("max_context_len", 3800)
remove_template = cfg.get("remove_template", False)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
llama_model=llama_model,
prompt_path=prompt_path,
prompt_template=prompt_template,
max_txt_len=max_txt_len,
low_resource=low_resource,
end_sym=end_sym,
lora_r = lora_r,
lora_alpha = lora_alpha,
chat_template = chat_template,
system_prompt = system_prompt,
token_pooling = token_pooling,
use_grad_checkpoint_llm=use_grad_checkpoint_llm,
max_context_len=max_context_len,
remove_template = remove_template
)
ckpt_path = cfg.get("ckpt", "") # load weights of MiniGPT-4
if ckpt_path:
print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt['model'], strict=False)
return model
def assign_imgs(batched_instruct_list, batched_img_embeds):
'''this function is used when the data is interleaved.
the interlevaed data is separated, and this function assign
corresponding image embeddings to each segment'''
if len(batched_img_embeds.shape) == 3:
batched_img_embeds = batched_img_embeds[:, None]
batched_assigned = []
for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds):
img_idx = 0
assigned_img = []
n_assigned = []
for instruct in instruct_list:
n_img = instruct.count('<ImageHere>')
if n_img > 0: # this instruction include images.
assigned_img.append(img_embeds[None, img_idx:img_idx+n_img])
img_idx += n_img
n_assigned.append(n_img)
else: # this instruction doesn't include images
assigned_img.append(None)
n_assigned.append(None)
batched_assigned.append(assigned_img)
return batched_assigned