Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import json | |
import os | |
import torch | |
import torch.distributed as dist | |
from itertools import chain | |
import minigpt4.common.dist_utils as dist_utils | |
from minigpt4.common.dist_utils import get_rank, get_world_size, is_main_process | |
from minigpt4.common.registry import registry | |
from minigpt4.common.vqa_tools.vqa_eval import VQAEval as VQATool | |
from minigpt4.tasks.vqa import VQATask | |
class VQARCTask(VQATask): | |
def __init__( | |
self, | |
num_beams, | |
max_len, | |
min_len, | |
evaluate, | |
num_ans_candidates, | |
inference_method="rank", | |
**kwargs, | |
): | |
super().__init__(num_beams, max_len, min_len, evaluate, num_ans_candidates, inference_method) | |
self.config = kwargs.get('config') | |
def setup_task(cls, cfg): | |
run_cfg = cfg.run_cfg | |
num_beams = run_cfg.get("num_beams", 3) | |
max_len = run_cfg.get("max_len", 10) | |
min_len = run_cfg.get("min_len", 1) | |
evaluate = run_cfg.get("evaluate", False) | |
inference_method = run_cfg.get("inference_method", "rank") | |
num_ans_candidates = run_cfg.get("num_ans_candidates", 128) | |
return cls( | |
num_beams=num_beams, | |
max_len=max_len, | |
min_len=min_len, | |
evaluate=evaluate, | |
num_ans_candidates=num_ans_candidates, | |
inference_method=inference_method, | |
config=run_cfg, | |
) | |
def valid_step(self, model, samples): | |
answers, captions, gradcams = model.predict_answers( | |
samples=samples, | |
inference_method=self.inference_method, | |
num_beams=self.num_beams, | |
max_len=self.max_len, | |
min_len=self.min_len, | |
internal_bsz_fid=self.config['internal_bsz_fid'], | |
num_captions=self.config['num_captions'], | |
num_captions_fid=self.config['num_captions_fid'], | |
cap_max_length=self.config['cap_max_length'], | |
cap_min_length=self.config['cap_min_length'], | |
top_k=self.config['top_k'], | |
top_p=self.config['top_p'], | |
repetition_penalty=self.config['repetition_penalty'], | |
num_patches=self.config['num_patches'], | |
block_num=self.config['block_num'], | |
) | |
pred_qa_pairs = [] | |
sample_captions = [] | |
sample_gradcams = [] | |
question_id = samples["question_id"] | |
for answer, caption, gradcam, ques_id in zip(answers, captions, gradcams, question_id): | |
ques_id = int(ques_id.item()) | |
pred_qa_pairs.append({"question_id": ques_id, "answer": answer}) | |
sample_captions.append({"question_id": ques_id, "caption": caption}) | |
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) | |
return [sample_gradcams, sample_captions, pred_qa_pairs] | |
def after_evaluation(self, val_result, split_name, **kwargs): | |
result_ = list(chain(*val_result[0::3])) | |
result_file = self.save_gradcam( | |
result_, | |
result_dir=registry.get_path("result_dir"), | |
filename=f"{split_name}_gradcam_result", | |
remove_duplicate="question_id", | |
) | |
result_ = list(chain(*val_result[1::3])) | |
result_file = self.save_result( | |
result_, | |
result_dir=registry.get_path("result_dir"), | |
filename=f"{split_name}_caption_result", | |
remove_duplicate="question_id", | |
) | |
result_ = list(chain(*val_result[2::3])) | |
result_file = self.save_result( | |
result_, | |
result_dir=registry.get_path("result_dir"), | |
filename=f"{split_name}_vqa_result", | |
remove_duplicate="question_id", | |
) | |
metrics = self._report_metrics(result_file=result_file, split=split_name) | |
return metrics | |
def save_gradcam(self, result, result_dir, filename, remove_duplicate=""): | |
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, get_rank())) | |
final_result_file = os.path.join(result_dir, '%s.pth' % filename) | |
torch.save({'result': result}, result_file) | |
dist.barrier() | |
if is_main_process(): | |
logging.warning("rank %d starts merging results." % get_rank()) | |
# combine results from all processes | |
result = [] | |
for rank in range(get_world_size()): | |
result_file = os.path.join(result_dir, '%s_rank%d.pth' % (filename, rank)) | |
res_ckpt = torch.load(result_file, map_location='cpu') | |
res = res_ckpt['result'] | |
result += res | |
if remove_duplicate: | |
result_new = [] | |
id_list = [] | |
for res in result: | |
if res[remove_duplicate] not in id_list: | |
id_list.append(res[remove_duplicate]) | |
result_new.append(res) | |
result = result_new | |
torch.save({'result': result}, final_result_file) | |
print("result file saved to %s" % final_result_file) | |
return final_result_file | |
class GQARCTask(VQARCTask): | |
def valid_step(self, model, samples): | |
answers, captions, gradcams = model.predict_answers( | |
samples=samples, | |
inference_method=self.inference_method, | |
num_beams=self.num_beams, | |
max_len=self.max_len, | |
min_len=self.min_len, | |
internal_bsz_fid=self.config['internal_bsz_fid'], | |
num_captions=self.config['num_captions'], | |
num_captions_fid=self.config['num_captions_fid'], | |
cap_max_length=self.config['cap_max_length'], | |
cap_min_length=self.config['cap_min_length'], | |
top_k=self.config['top_k'], | |
top_p=self.config['top_p'], | |
repetition_penalty=self.config['repetition_penalty'], | |
num_patches=self.config['num_patches'], | |
block_num=self.config['block_num'], | |
) | |
pred_qa_pairs = [] | |
sample_captions = [] | |
sample_gradcams = [] | |
question_id = samples["question_id"] | |
gt_answers = samples["answer"] | |
for pred_answer, caption, gradcam, ques_id, gt_answer in zip(answers, captions, gradcams, question_id, gt_answers): | |
ques_id = int(ques_id.item()) | |
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer}) | |
sample_captions.append({"question_id": ques_id, "caption": caption}) | |
sample_gradcams.append({"question_id": ques_id, "gradcam": gradcam}) | |
return [sample_gradcams, sample_captions, pred_qa_pairs] | |
def _report_metrics(self, result_file, split): | |
""" | |
TODO: add other evaluation metrics for GQA | |
""" | |
results = json.load(open(result_file, "r")) | |
acc = [] | |
vqa_tool = VQATool() | |
for res in results: | |
if res["gt_ans"] is None: | |
# prepare test results for leaderboard evaluation | |
self._save_result_leaderboard(results) | |
return | |
gt_ans = res["gt_ans"] | |
pred = res["pred_ans"] | |
if self.inference_method == "generate": | |
pred = vqa_tool.processPunctuation(pred) | |
pred = vqa_tool.processDigitArticle(pred) | |
vqa_acc = 1 if pred == gt_ans else 0 | |
acc.append(vqa_acc) | |
accuracy = sum(acc) / len(acc) * 100 | |
metrics = {"agg_metrics": accuracy, "acc": accuracy} | |
with open( | |
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" | |
) as f: | |
f.write(json.dumps(metrics) + "\n") | |
logging.info(metrics) | |
return metrics | |
def _save_result_leaderboard(self, results): | |
""" | |
Saving the results in the format required for leaderboard evaluation. | |
""" | |
result_leaderboard = [] | |
for res in results: | |
result_leaderboard.append({ | |
"questionId": str(res['question_id']), | |
"prediction": str(res["pred_ans"]), | |
}) | |
result_file = registry.get_path("result_dir") + "_leaderboard.json" | |
with open(result_file, "w") as f: | |
json.dump(result_leaderboard, f) | |
logging.info(f"Saved results for leaderboard evaluation at {result_file}") |