Spaces:
Runtime error
Runtime error
_base_ = ['../PixArt_xl2_internal.py'] | |
data_root = 'data' | |
image_list_json = ['data_info.json',] | |
data = dict(type='InternalDataMS', root='InternData', image_list_json=image_list_json, transform='default_train', load_vae_feat=True) | |
image_size = 1024 | |
# model setting | |
model = 'PixArtMS_XL_2' # model for multi-scale training | |
fp32_attention = True | |
load_from = None | |
vae_pretrained = "output/pretrained_models/sd-vae-ft-ema" | |
aspect_ratio_type = 'ASPECT_RATIO_1024' # base aspect ratio [ASPECT_RATIO_512 or ASPECT_RATIO_256] | |
multi_scale = True # if use multiscale dataset model training | |
pe_interpolation = 2.0 | |
# training setting | |
num_workers=10 | |
train_batch_size = 12 # max 14 for PixArt-xL/2 when grad_checkpoint | |
num_epochs = 10 # 3 | |
gradient_accumulation_steps = 1 | |
grad_checkpointing = True | |
gradient_clip = 0.01 | |
optimizer = dict(type='AdamW', lr=2e-5, weight_decay=3e-2, eps=1e-10) | |
lr_schedule_args = dict(num_warmup_steps=1000) | |
save_model_epochs=1 | |
save_model_steps=2000 | |
log_interval = 20 | |
eval_sampling_steps = 200 | |
work_dir = 'output/debug' | |
micro_condition = True | |