Spaces:
Runtime error
Runtime error
from typing import Sequence, List, Tuple | |
import numpy as np | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
class PromptSearchEngine: | |
'''Instanciate the language model and index for searching the most similar prompts. Performs the semantic search.''' | |
def __init__(self, model_name='bert-base-nli-mean-tokens'): | |
print("Search engine started!") | |
self.model = SentenceTransformer(model_name) | |
# Initialize FAISS index with right number of dimensions | |
self.embedding_dimension = self.model.get_sentence_embedding_dimension() | |
self.index = faiss.IndexFlatL2(self.embedding_dimension) # Euclidian distance index - brute force for small datasets | |
self.prompts_track = [] # To keep track of original prompts for returning results | |
def add_prompts_to_vector_database(self, prompts): | |
print("Data encoding started...") | |
embeddings = self.model.encode(prompts) | |
self.index.add(np.array(embeddings).astype('float32')) | |
self.prompts_track.extend(prompts) | |
print("Data encoding completed!") | |
def most_similar(self, query, top_k=5): | |
# Encode the | |
print('Finding the most similar vectors') | |
query_embedding = self.model.encode([query]).astype('float32') | |
# Optimizovana pretraga ali moramo promeniti vrstu indeksa za pretragu kod stvarne upotrebe | |
distances, indices = self.index.search(query_embedding, top_k) | |
# Retrieve the corresponding prompts for the found indices | |
similar_prompts = [self.prompts_track[idx] for idx in indices[0]] | |
return similar_prompts, distances[0] # Return both the similar prompts and their distances | |
def cosine_similarity(self, query_vector, index): | |
"""Compute the cosine similarity between a query vector and a set of corpus vectors. | |
Args: query_vector: The query vector to compare against the corpus vectors. corpus_vectors: The set of corpus vectors to compare against the query vector. | |
Returns: The cosine similarity between the query vector and the corpus vectors. | |
""" | |
print('Searching for all similarities...') | |
query_vector = np.array(query_vector).astype('float32') | |
query_norm = query_vector / np.linalg.norm(query_vector) | |
# Get all vectors from FAISS | |
index_vectors = index.reconstruct_n(0, index.ntotal) # Reconstruct all vectors in the index | |
index_norms = np.linalg.norm(index_vectors, axis=1, keepdims=True) | |
normalized_index_vectors = index_vectors / index_norms | |
cosine_similarities = np.dot(normalized_index_vectors, query_norm.T) | |
return cosine_similarities | |