|
|
|
|
|
import os |
|
import random |
|
import uuid |
|
import json |
|
|
|
import gradio as gr |
|
import numpy as np |
|
from PIL import Image |
|
import spaces |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
|
|
bad_words = json.loads(os.getenv('BAD_WORDS', "[]")) |
|
def check_text(prompt): |
|
for i in bad_words: |
|
if i in prompt: |
|
return True |
|
return False |
|
|
|
DESCRIPTION = """# RealVisXL_V3.0""" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048")) |
|
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" |
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
|
NUM_IMAGES_PER_PROMPT = 1 |
|
|
|
if torch.cuda.is_available(): |
|
pipe = DiffusionPipeline.from_pretrained( |
|
"SG161222/RealVisXL_V3.0", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
add_watermarker=False, |
|
variant="fp16" |
|
) |
|
if ENABLE_CPU_OFFLOAD: |
|
pipe.enable_model_cpu_offload() |
|
else: |
|
pipe.to(device) |
|
print("Loaded on Device!") |
|
|
|
if USE_TORCH_COMPILE: |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
print("Model Compiled!") |
|
|
|
|
|
def save_image(img): |
|
unique_name = str(uuid.uuid4()) + ".png" |
|
img.save(unique_name) |
|
return unique_name |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def generate(prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True)): |
|
if check_text(prompt): |
|
return 'NSFW Detection' |
|
return _generate( |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
use_resolution_binning, |
|
progress |
|
) |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def _generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
use_negative_prompt: bool = False, |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
guidance_scale: float = 3, |
|
randomize_seed: bool = False, |
|
use_resolution_binning: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
pipe.to(device) |
|
seed = int(randomize_seed_fn(seed, randomize_seed)) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_negative_prompt: |
|
negative_prompt = None |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
width=width, |
|
height=height, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=25, |
|
generator=generator, |
|
num_images_per_prompt=NUM_IMAGES_PER_PROMPT, |
|
use_resolution_binning=use_resolution_binning, |
|
output_type="pil", |
|
).images |
|
|
|
image_paths = [save_image(img) for img in images] |
|
return image_paths, seed |
|
|
|
|
|
examples = [ |
|
"neon holography crystal cat", |
|
"a cat eating a piece of cheese", |
|
"an astronaut riding a horse in space", |
|
"a cartoon of a boy playing with a tiger", |
|
"a cute robot artist painting on an easel, concept art", |
|
|
|
] |
|
|
|
css = ''' |
|
.gradio-container{max-width: 560px !important} |
|
h1{text-align:center} |
|
''' |
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
with gr.Row(): |
|
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False) |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
visible=True, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(visible=True): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=0.1, |
|
maximum=20, |
|
step=0.1, |
|
value=3.0, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=[result, seed], |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
use_negative_prompt.change( |
|
fn=lambda x: gr.update(visible=x), |
|
inputs=use_negative_prompt, |
|
outputs=negative_prompt, |
|
api_name=False, |
|
) |
|
|
|
gr.on( |
|
triggers=[ |
|
prompt.submit, |
|
negative_prompt.submit, |
|
run_button.click, |
|
], |
|
fn=generate, |
|
inputs=[ |
|
prompt, |
|
negative_prompt, |
|
use_negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
randomize_seed, |
|
], |
|
outputs=[result, seed], |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |