Spaces:
Sleeping
Sleeping
File size: 3,423 Bytes
6e57eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "d82abfc8-1e95-41f0-a9af-4946de3ad846",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"ДХЛ. Красная шапочка и другие сказки\n",
"Ослиная шкура\n",
"Рождественское чудо мистера Туми\n"
]
}
],
"source": [
"import pandas as pd\n",
"import torch\n",
"import numpy as np\n",
"from transformers import AutoTokenizer, AutoModel\n",
"import faiss\n",
"\n",
"# Загрузка модели и токенизатора BERT\n",
"model_name = \"cointegrated/rubert-tiny2\"\n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModel.from_pretrained(model_name)\n",
"\n",
"# Загрузка данных из CSV\n",
"df = pd.read_csv('final_data.csv')\n",
"\n",
"# Максимальная длина текста\n",
"MAX_LEN = 300\n",
"\n",
"# Функция для встраивания текста с использованием BERT\n",
"def embed_bert_cls(text, model=model, tokenizer=tokenizer):\n",
" t = tokenizer(text,\n",
" padding=True,\n",
" truncation=True,\n",
" return_tensors='pt',\n",
" max_length=MAX_LEN)\n",
" with torch.no_grad():\n",
" model_output = model(**{k: v.to(model.device) for k, v in t.items()})\n",
" embeddings = model_output.last_hidden_state[:, 0, :]\n",
" embeddings = torch.nn.functional.normalize(embeddings)\n",
" return embeddings[0].cpu().squeeze()\n",
"\n",
"# Загрузка предварительно вычисленных векторов\n",
"embeddings = np.loadtxt('embeddings.txt')\n",
"embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]\n",
"\n",
"# Создание индекса Faiss\n",
"embeddings_matrix = np.stack(embeddings)\n",
"index = faiss.IndexFlatIP(embeddings_matrix.shape[1])\n",
"index.add(embeddings_matrix)\n",
"\n",
"# Текст запроса\n",
"text = 'добрую сказку с плохим концом для детей'\n",
"\n",
"# Встраивание запроса и поиск ближайших векторов с использованием Faiss\n",
"query_embedding = embed_bert_cls(text)\n",
"query_embedding = query_embedding.numpy().astype('float32')\n",
"k, indices = index.search(np.expand_dims(query_embedding, axis=0), 3)\n",
"\n",
"# Вывод результатов\n",
"for i in indices[0]:\n",
" print(df['title'][i])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c0aa7ef2-7f93-4300-9555-047bbc6c1036",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|