File size: 42,418 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
4efe6b5
 
 
 
 
2c02b19
4efe6b5
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
import os
import sys
import time
import torch
import librosa
import logging
import traceback
import numpy as np
import soundfile as sf
import noisereduce as nr
from pedalboard import (
    Pedalboard,
    Chorus,
    Distortion,
    Reverb,
    PitchShift,
    Limiter,
    Gain,
    Bitcrush,
    Clipping,
    Compressor,
    Delay,
)

from scipy.io import wavfile
from audio_upscaler import upscale

now_dir = os.getcwd()
sys.path.append(now_dir)

from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.utils import load_audio_infer, load_embedding
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.configs.config import Config

logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logging.getLogger("faiss").setLevel(logging.WARNING)
logging.getLogger("faiss.loader").setLevel(logging.WARNING)


class VoiceConverter:
    """
    A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
    """

    def __init__(self):
        """
        Initializes the VoiceConverter with default configuration, and sets up models and parameters.
        """
        self.config = Config()  # Load RVC configuration
        self.hubert_model = (
            None  # Initialize the Hubert model (for embedding extraction)
        )
        self.last_embedder_model = None  # Last used embedder model
        self.tgt_sr = None  # Target sampling rate for the output audio
        self.net_g = None  # Generator network for voice conversion
        self.vc = None  # Voice conversion pipeline instance
        self.cpt = None  # Checkpoint for loading model weights
        self.version = None  # Model version
        self.n_spk = None  # Number of speakers in the model
        self.use_f0 = None  # Whether the model uses F0

    def load_hubert(self, embedder_model: str, embedder_model_custom: str = None):
        """
        Loads the HuBERT model for speaker embedding extraction.

        Args:
            embedder_model (str): Path to the pre-trained HuBERT model.
            embedder_model_custom (str): Path to the custom HuBERT model.
        """
        self.hubert_model = load_embedding(embedder_model, embedder_model_custom)
        self.hubert_model.to(self.config.device)
        self.hubert_model = (
            self.hubert_model.half()
            if self.config.is_half
            else self.hubert_model.float()
        )
        self.hubert_model.eval()

    @staticmethod
    def remove_audio_noise(input_audio_path, reduction_strength=0.7):
        """
        Removes noise from an audio file using the NoiseReduce library.

        Args:
            input_audio_path (str): Path to the input audio file.
            reduction_strength (float): Strength of the noise reduction. Default is 0.7.
        """
        try:
            rate, data = wavfile.read(input_audio_path)
            reduced_noise = nr.reduce_noise(
                y=data, sr=rate, prop_decrease=reduction_strength
            )
            return reduced_noise
        except Exception as error:
            print(f"An error occurred removing audio noise: {error}")
            return None

    @staticmethod
    def convert_audio_format(input_path, output_path, output_format):
        """
        Converts an audio file to a specified output format.

        Args:
            input_path (str): Path to the input audio file.
            output_path (str): Path to the output audio file.
            output_format (str): Desired audio format (e.g., "WAV", "MP3").
        """
        try:
            if output_format != "WAV":
                print(f"Converting audio to {output_format} format...")
                audio, sample_rate = librosa.load(input_path, sr=None)
                common_sample_rates = [
                    8000,
                    11025,
                    12000,
                    16000,
                    22050,
                    24000,
                    32000,
                    44100,
                    48000,
                ]
                target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
                audio = librosa.resample(
                    audio, orig_sr=sample_rate, target_sr=target_sr
                )
                sf.write(output_path, audio, target_sr, format=output_format.lower())
            return output_path
        except Exception as error:
            print(f"An error occurred converting the audio format: {error}")

    @staticmethod
    def post_process_audio(
        audio_input,
        sample_rate,
        reverb: bool,
        reverb_room_size: float,
        reverb_damping: float,
        reverb_wet_level: float,
        reverb_dry_level: float,
        reverb_width: float,
        reverb_freeze_mode: float,
        pitch_shift: bool,
        pitch_shift_semitones: int,
        limiter: bool,
        limiter_threshold: float,
        limiter_release: float,
        gain: bool,
        gain_db: float,
        distortion: bool,
        distortion_gain: float,
        chorus: bool,
        chorus_rate: float,
        chorus_depth: float,
        chorus_delay: float,
        chorus_feedback: float,
        chorus_mix: float,
        bitcrush: bool,
        bitcrush_bit_depth: int,
        clipping: bool,
        clipping_threshold: float,
        compressor: bool,
        compressor_threshold: float,
        compressor_ratio: float,
        compressor_attack: float,
        compressor_release: float,
        delay: bool,
        delay_seconds: float,
        delay_feedback: float,
        delay_mix: float,
        audio_output_path: str,
    ):
        board = Pedalboard()
        if reverb:
            reverb = Reverb(
                room_size=reverb_room_size,
                damping=reverb_damping,
                wet_level=reverb_wet_level,
                dry_level=reverb_dry_level,
                width=reverb_width,
                freeze_mode=reverb_freeze_mode,
            )
            board.append(reverb)
        if pitch_shift:
            pitch_shift = PitchShift(semitones=pitch_shift_semitones)
            board.append(pitch_shift)
        if limiter:
            limiter = Limiter(
                threshold_db=limiter_threshold, release_ms=limiter_release
            )
            board.append(limiter)
        if gain:
            gain = Gain(gain_db=gain_db)
            board.append(gain)
        if distortion:
            distortion = Distortion(drive_db=distortion_gain)
            board.append(distortion)
        if chorus:
            chorus = Chorus(
                rate_hz=chorus_rate,
                depth=chorus_depth,
                centre_delay_ms=chorus_delay,
                feedback=chorus_feedback,
                mix=chorus_mix,
            )
            board.append(chorus)
        if bitcrush:
            bitcrush = Bitcrush(bit_depth=bitcrush_bit_depth)
            board.append(bitcrush)
        if clipping:
            clipping = Clipping(threshold_db=clipping_threshold)
            board.append(clipping)
        if compressor:
            compressor = Compressor(
                threshold_db=compressor_threshold,
                ratio=compressor_ratio,
                attack_ms=compressor_attack,
                release_ms=compressor_release,
            )
            board.append(compressor)
        if delay:
            delay = Delay(
                delay_seconds=delay_seconds,
                feedback=delay_feedback,
                mix=delay_mix,
            )
            board.append(delay)
        audio_input, sample_rate = librosa.load(audio_input, sr=sample_rate)
        output = board(audio_input, sample_rate)
        sf.write(audio_output_path, output, sample_rate, format="WAV")
        return audio_output_path

    def convert_audio(
        self,
        audio_input_path: str,
        audio_output_path: str,
        model_path: str,
        index_path: str,
        embedder_model: str,
        pitch: int,
        f0_file: str,
        f0_method: str,
        index_rate: float,
        volume_envelope: int,
        protect: float,
        hop_length: int,
        split_audio: bool,
        f0_autotune: bool,
        filter_radius: int,
        embedder_model_custom: str,
        clean_audio: bool,
        clean_strength: float,
        export_format: str,
        upscale_audio: bool,
        formant_shifting: bool,
        formant_qfrency: float,
        formant_timbre: float,
        post_process: bool,
        reverb: bool,
        pitch_shift: bool,
        limiter: bool,
        gain: bool,
        distortion: bool,
        chorus: bool,
        bitcrush: bool,
        clipping: bool,
        compressor: bool,
        delay: bool,
        sliders: dict,
        resample_sr: int = 0,
        sid: int = 0,
    ):
        """
        Performs voice conversion on the input audio.

        Args:
            audio_input_path (str): Path to the input audio file.
            audio_output_path (str): Path to the output audio file.
            model_path (str): Path to the voice conversion model.
            index_path (str): Path to the index file.
            sid (int, optional): Speaker ID. Default is 0.
            pitch (str, optional): Key for F0 up-sampling. Default is None.
            f0_file (str, optional): Path to the F0 file. Default is None.
            f0_method (str, optional): Method for F0 extraction. Default is None.
            index_rate (float, optional): Rate for index matching. Default is None.
            resample_sr (int, optional): Resample sampling rate. Default is 0.
            volume_envelope (float, optional): RMS mix rate. Default is None.
            protect (float, optional): Protection rate for certain audio segments. Default is None.
            hop_length (int, optional): Hop length for audio processing. Default is None.
            split_audio (bool, optional): Whether to split the audio for processing. Default is False.
            f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
            filter_radius (int, optional): Radius for filtering. Default is None.
            embedder_model (str, optional): Path to the embedder model. Default is None.
            embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
            clean_audio (bool, optional): Whether to clean the audio. Default is False.
            clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
            export_format (str, optional): Format for exporting the audio. Default is "WAV".
            upscale_audio (bool, optional): Whether to upscale the audio. Default is False.
            formant_shift (bool, optional): Whether to shift the formants. Default is False.
            formant_qfrency (float, optional): Formant frequency. Default is 1.0.
            formant_timbre (float, optional): Formant timbre. Default is 1.0.
            reverb (bool, optional): Whether to apply reverb. Default is False.
            pitch_shift (bool, optional): Whether to apply pitch shift. Default is False.
            limiter (bool, optional): Whether to apply a limiter. Default is False.
            gain (bool, optional): Whether to apply gain. Default is False.
            distortion (bool, optional): Whether to apply distortion. Default is False.
            chorus (bool, optional): Whether to apply chorus. Default is False.
            bitcrush (bool, optional): Whether to apply bitcrush. Default is False.
            clipping (bool, optional): Whether to apply clipping. Default is False.
            compressor (bool, optional): Whether to apply a compressor. Default is False.
            delay (bool, optional): Whether to apply delay. Default is False.
            sliders (dict, optional): Dictionary of effect parameters. Default is None.
        """
        self.get_vc(model_path, sid)

        try:
            start_time = time.time()
            print(f"Converting audio '{audio_input_path}'...")

            if upscale_audio == True:
                upscale(audio_input_path, audio_input_path)
            audio = load_audio_infer(
                audio_input_path,
                16000,
                formant_shifting,
                formant_qfrency,
                formant_timbre,
            )
            audio_max = np.abs(audio).max() / 0.95

            if audio_max > 1:
                audio /= audio_max

            if not self.hubert_model or embedder_model != self.last_embedder_model:
                self.load_hubert(embedder_model, embedder_model_custom)
                self.last_embedder_model = embedder_model

            file_index = (
                index_path.strip()
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip()
                .replace("trained", "added")
            )

            if self.tgt_sr != resample_sr >= 16000:
                self.tgt_sr = resample_sr

            if split_audio:
                result, new_dir_path = process_audio(audio_input_path)
                if result == "Error":
                    return "Error with Split Audio", None

                dir_path = (
                    new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
                )
                if dir_path:
                    paths = [
                        os.path.join(root, name)
                        for root, _, files in os.walk(dir_path, topdown=False)
                        for name in files
                        if name.endswith(".wav") and root == dir_path
                    ]
                try:
                    for path in paths:
                        self.convert_audio(
                            audio_input_path=path,
                            audio_output_path=path,
                            model_path=model_path,
                            index_path=index_path,
                            sid=sid,
                            pitch=pitch,
                            f0_file=None,
                            f0_method=f0_method,
                            index_rate=index_rate,
                            resample_sr=resample_sr,
                            volume_envelope=volume_envelope,
                            protect=protect,
                            hop_length=hop_length,
                            split_audio=False,
                            f0_autotune=f0_autotune,
                            filter_radius=filter_radius,
                            export_format=export_format,
                            upscale_audio=upscale_audio,
                            embedder_model=embedder_model,
                            embedder_model_custom=embedder_model_custom,
                            clean_audio=clean_audio,
                            clean_strength=clean_strength,
                            formant_shifting=formant_shifting,
                            formant_qfrency=formant_qfrency,
                            formant_timbre=formant_timbre,
                            post_process=post_process,
                            reverb=reverb,
                            pitch_shift=pitch_shift,
                            limiter=limiter,
                            gain=gain,
                            distortion=distortion,
                            chorus=chorus,
                            bitcrush=bitcrush,
                            clipping=clipping,
                            compressor=compressor,
                            delay=delay,
                            sliders=sliders,
                        )
                except Exception as error:
                    print(f"An error occurred processing the segmented audio: {error}")
                    print(traceback.format_exc())
                    return f"Error {error}"
                print("Finished processing segmented audio, now merging audio...")
                merge_timestamps_file = os.path.join(
                    os.path.dirname(new_dir_path),
                    f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
                )
                self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
                os.remove(merge_timestamps_file)
                if post_process:
                    audio_opt = self.post_process_audio(
                        audio_input=audio_opt,
                        sample_rate=self.tgt_sr,
                        reverb=reverb,
                        reverb_room_size=sliders[0],
                        reverb_damping=sliders[1],
                        reverb_wet_level=sliders[2],
                        reverb_dry_level=sliders[3],
                        reverb_width=sliders[4],
                        reverb_freeze_mode=sliders[5],
                        pitch_shift=pitch_shift,
                        pitch_shift_semitones=sliders[6],
                        limiter=limiter,
                        limiter_threshold=sliders[7],
                        limiter_release=sliders[8],
                        gain=gain,
                        gain_db=sliders[9],
                        distortion=distortion,
                        distortion_gain=sliders[10],
                        chorus=chorus,
                        chorus_rate=sliders[11],
                        chorus_depth=sliders[12],
                        chorus_delay=sliders[13],
                        chorus_feedback=sliders[14],
                        chorus_mix=sliders[15],
                        bitcrush=bitcrush,
                        bitcrush_bit_depth=sliders[16],
                        clipping=clipping,
                        clipping_threshold=sliders[17],
                        compressor=compressor,
                        compressor_threshold=sliders[18],
                        compressor_ratio=sliders[19],
                        compressor_attack=sliders[20],
                        compressor_release=sliders[21],
                        delay=delay,
                        delay_seconds=sliders[22],
                        delay_feedback=sliders[23],
                        delay_mix=sliders[24],
                        audio_output_path=audio_output_path,
                    )
                sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
            else:
                audio_opt = self.vc.pipeline(
                    model=self.hubert_model,
                    net_g=self.net_g,
                    sid=sid,
                    audio=audio,
                    input_audio_path=audio_input_path,
                    pitch=pitch,
                    f0_method=f0_method,
                    file_index=file_index,
                    index_rate=index_rate,
                    pitch_guidance=self.use_f0,
                    filter_radius=filter_radius,
                    tgt_sr=self.tgt_sr,
                    resample_sr=resample_sr,
                    volume_envelope=volume_envelope,
                    version=self.version,
                    protect=protect,
                    hop_length=hop_length,
                    f0_autotune=f0_autotune,
                    f0_file=f0_file,
                )

            if audio_output_path:
                sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")

            if clean_audio:
                cleaned_audio = self.remove_audio_noise(
                    audio_output_path, clean_strength
                )
                if cleaned_audio is not None:
                    sf.write(
                        audio_output_path, cleaned_audio, self.tgt_sr, format="WAV"
                    )
            if post_process:
                audio_output_path = self.post_process_audio(
                    audio_input=audio_output_path,
                    sample_rate=self.tgt_sr,
                    reverb=reverb,
                    reverb_room_size=sliders["reverb_room_size"],
                    reverb_damping=sliders["reverb_damping"],
                    reverb_wet_level=sliders["reverb_wet_level"],
                    reverb_dry_level=sliders["reverb_dry_level"],
                    reverb_width=sliders["reverb_width"],
                    reverb_freeze_mode=sliders["reverb_freeze_mode"],
                    pitch_shift=pitch_shift,
                    pitch_shift_semitones=sliders["pitch_shift_semitones"],
                    limiter=limiter,
                    limiter_threshold=sliders["limiter_threshold"],
                    limiter_release=sliders["limiter_release"],
                    gain=gain,
                    gain_db=sliders["gain_db"],
                    distortion=distortion,
                    distortion_gain=sliders["distortion_gain"],
                    chorus=chorus,
                    chorus_rate=sliders["chorus_rate"],
                    chorus_depth=sliders["chorus_depth"],
                    chorus_delay=sliders["chorus_delay"],
                    chorus_feedback=sliders["chorus_feedback"],
                    chorus_mix=sliders["chorus_mix"],
                    bitcrush=bitcrush,
                    bitcrush_bit_depth=sliders["bitcrush_bit_depth"],
                    clipping=clipping,
                    clipping_threshold=sliders["clipping_threshold"],
                    compressor=compressor,
                    compressor_threshold=sliders["compressor_threshold"],
                    compressor_ratio=sliders["compressor_ratio"],
                    compressor_attack=sliders["compressor_attack"],
                    compressor_release=sliders["compressor_release"],
                    delay=delay,
                    delay_seconds=sliders["delay_seconds"],
                    delay_feedback=sliders["delay_feedback"],
                    delay_mix=sliders["delay_mix"],
                    audio_output_path=audio_output_path,
                )
            output_path_format = audio_output_path.replace(
                ".wav", f".{export_format.lower()}"
            )
            audio_output_path = self.convert_audio_format(
                audio_output_path, output_path_format, export_format
            )

            elapsed_time = time.time() - start_time
            print(
                f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds."
            )

        except Exception as error:
            print(f"An error occurred during audio conversion: {error}")
            print(traceback.format_exc())

    def convert_audio_batch(
        self,
        audio_input_paths: str,
        audio_output_path: str,
        model_path: str,
        index_path: str,
        embedder_model: str,
        pitch: int,
        f0_file: str,
        f0_method: str,
        index_rate: float,
        volume_envelope: int,
        protect: float,
        hop_length: int,
        split_audio: bool,
        f0_autotune: bool,
        filter_radius: int,
        embedder_model_custom: str,
        clean_audio: bool,
        clean_strength: float,
        export_format: str,
        upscale_audio: bool,
        formant_shifting: bool,
        formant_qfrency: float,
        formant_timbre: float,
        resample_sr: int = 0,
        sid: int = 0,
        pid_file_path: str = None,
        post_process: bool = False,
        reverb: bool = False,
        pitch_shift: bool = False,
        limiter: bool = False,
        gain: bool = False,
        distortion: bool = False,
        chorus: bool = False,
        bitcrush: bool = False,
        clipping: bool = False,
        compressor: bool = False,
        delay: bool = False,
        sliders: dict = None,
    ):
        """
        Performs voice conversion on a batch of input audio files.

        Args:
            audio_input_paths (list): List of paths to the input audio files.
            audio_output_path (str): Path to the output audio file.
            model_path (str): Path to the voice conversion model.
            index_path (str): Path to the index file.
            sid (int, optional): Speaker ID. Default is 0.
            pitch (str, optional): Key for F0 up-sampling. Default is None.
            f0_file (str, optional): Path to the F0 file. Default is None.
            f0_method (str, optional): Method for F0 extraction. Default is None.
            index_rate (float, optional): Rate for index matching. Default is None.
            resample_sr (int, optional): Resample sampling rate. Default is 0.
            volume_envelope (float, optional): RMS mix rate. Default is None.
            protect (float, optional): Protection rate for certain audio segments. Default is None.
            hop_length (int, optional): Hop length for audio processing. Default is None.
            split_audio (bool, optional): Whether to split the audio for processing. Default is False.
            f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
            filter_radius (int, optional): Radius for filtering. Default is None.
            embedder_model (str, optional): Path to the embedder model. Default is None.
            embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
            clean_audio (bool, optional): Whether to clean the audio. Default is False.
            clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
            export_format (str, optional): Format for exporting the audio. Default is "WAV".
            upscale_audio (bool, optional): Whether to upscale the audio. Default is False.
            formant_shift (bool, optional): Whether to shift the formants. Default is False.
            formant_qfrency (float, optional): Formant frequency. Default is 1.0.
            formant_timbre (float, optional): Formant timbre. Default is 1.0.
            pid_file_path (str, optional): Path to the PID file. Default is None.
            post_process (bool, optional): Whether to apply post-processing effects. Default is False.
            reverb (bool, optional): Whether to apply reverb. Default is False.
            pitch_shift (bool, optional): Whether to apply pitch shift. Default is False.
            limiter (bool, optional): Whether to apply a limiter. Default is False.
            gain (bool, optional): Whether to apply gain. Default is False.
            distortion (bool, optional): Whether to apply distortion. Default is False.
            chorus (bool, optional): Whether to apply chorus. Default is False.
            bitcrush (bool, optional): Whether to apply bitcrush. Default is False.
            clipping (bool, optional): Whether to apply clipping. Default is False.
            compressor (bool, optional): Whether to apply a compressor. Default is False.
            delay (bool, optional): Whether to apply delay. Default is False.
            sliders (dict, optional): Dictionary of effect parameters. Default is None.

        """
        pid = os.getpid()
        with open(pid_file_path, "w") as pid_file:
            pid_file.write(str(pid))
        try:
            if not self.hubert_model or embedder_model != self.last_embedder_model:
                self.load_hubert(embedder_model, embedder_model_custom)
                self.last_embedder_model = embedder_model
            self.get_vc(model_path, sid)
            file_index = (
                index_path.strip()
                .strip('"')
                .strip("\n")
                .strip('"')
                .strip()
                .replace("trained", "added")
            )
            start_time = time.time()
            print(f"Converting audio batch '{audio_input_paths}'...")
            audio_files = [
                f
                for f in os.listdir(audio_input_paths)
                if f.endswith((".mp3", ".wav", ".flac", ".m4a", ".ogg", ".opus"))
            ]
            print(f"Detected {len(audio_files)} audio files for inference.")
            for i, audio_input_path in enumerate(audio_files):
                audio_output_paths = os.path.join(
                    audio_output_path,
                    f"{os.path.splitext(os.path.basename(audio_input_path))[0]}_output.{export_format.lower()}",
                )
                if os.path.exists(audio_output_paths):
                    continue
                print(f"Converting audio '{audio_input_path}'...")
                audio_input_path = os.path.join(audio_input_paths, audio_input_path)

                if upscale_audio == True:
                    upscale(audio_input_path, audio_input_path)
                audio = load_audio_infer(
                    audio_input_path,
                    16000,
                    formant_shifting,
                    formant_qfrency,
                    formant_timbre,
                )
                audio_max = np.abs(audio).max() / 0.95

                if audio_max > 1:
                    audio /= audio_max

                if self.tgt_sr != resample_sr >= 16000:
                    self.tgt_sr = resample_sr

                if split_audio:
                    result, new_dir_path = process_audio(audio_input_path)
                    if result == "Error":
                        return "Error with Split Audio", None

                    dir_path = (
                        new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
                    )
                    if dir_path:
                        paths = [
                            os.path.join(root, name)
                            for root, _, files in os.walk(dir_path, topdown=False)
                            for name in files
                            if name.endswith(".wav") and root == dir_path
                        ]
                    try:
                        for path in paths:
                            self.convert_audio(
                                audio_input_path=path,
                                audio_output_path=path,
                                model_path=model_path,
                                index_path=index_path,
                                sid=sid,
                                pitch=pitch,
                                f0_file=None,
                                f0_method=f0_method,
                                index_rate=index_rate,
                                resample_sr=resample_sr,
                                volume_envelope=volume_envelope,
                                protect=protect,
                                hop_length=hop_length,
                                split_audio=False,
                                f0_autotune=f0_autotune,
                                filter_radius=filter_radius,
                                export_format=export_format,
                                upscale_audio=upscale_audio,
                                embedder_model=embedder_model,
                                embedder_model_custom=embedder_model_custom,
                                clean_audio=clean_audio,
                                clean_strength=clean_strength,
                                formant_shifting=formant_shifting,
                                formant_qfrency=formant_qfrency,
                                formant_timbre=formant_timbre,
                                post_process=post_process,
                                reverb=reverb,
                                pitch_shift=pitch_shift,
                                limiter=limiter,
                                gain=gain,
                                distortion=distortion,
                                chorus=chorus,
                                bitcrush=bitcrush,
                                clipping=clipping,
                                compressor=compressor,
                                delay=delay,
                                sliders=sliders,
                            )
                    except Exception as error:
                        print(
                            f"An error occurred processing the segmented audio: {error}"
                        )
                        print(traceback.format_exc())
                        return f"Error {error}"
                    print("Finished processing segmented audio, now merging audio...")
                    merge_timestamps_file = os.path.join(
                        os.path.dirname(new_dir_path),
                        f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
                    )
                    self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
                    os.remove(merge_timestamps_file)
                    if post_process:
                        audio_opt = self.post_process_audio(
                            audio_input=audio_opt,
                            sample_rate=self.tgt_sr,
                            reverb=reverb,
                            reverb_room_size=sliders[0],
                            reverb_damping=sliders[1],
                            reverb_wet_level=sliders[2],
                            reverb_dry_level=sliders[3],
                            reverb_width=sliders[4],
                            reverb_freeze_mode=sliders[5],
                            pitch_shift=pitch_shift,
                            pitch_shift_semitones=sliders[6],
                            limiter=limiter,
                            limiter_threshold=sliders[7],
                            limiter_release=sliders[8],
                            gain=gain,
                            gain_db=sliders[9],
                            distortion=distortion,
                            distortion_gain=sliders[10],
                            chorus=chorus,
                            chorus_rate=sliders[11],
                            chorus_depth=sliders[12],
                            chorus_delay=sliders[13],
                            chorus_feedback=sliders[14],
                            chorus_mix=sliders[15],
                            bitcrush=bitcrush,
                            bitcrush_bit_depth=sliders[16],
                            clipping=clipping,
                            clipping_threshold=sliders[17],
                            compressor=compressor,
                            compressor_threshold=sliders[18],
                            compressor_ratio=sliders[19],
                            compressor_attack=sliders[20],
                            compressor_release=sliders[21],
                            delay=delay,
                            delay_seconds=sliders[22],
                            delay_feedback=sliders[23],
                            delay_mix=sliders[24],
                            audio_output_path=audio_output_paths,
                        )
                        sf.write(
                            audio_output_paths, audio_opt, self.tgt_sr, format="WAV"
                        )
                else:
                    audio_opt = self.vc.pipeline(
                        model=self.hubert_model,
                        net_g=self.net_g,
                        sid=sid,
                        audio=audio,
                        input_audio_path=audio_input_path,
                        pitch=pitch,
                        f0_method=f0_method,
                        file_index=file_index,
                        index_rate=index_rate,
                        pitch_guidance=self.use_f0,
                        filter_radius=filter_radius,
                        tgt_sr=self.tgt_sr,
                        resample_sr=resample_sr,
                        volume_envelope=volume_envelope,
                        version=self.version,
                        protect=protect,
                        hop_length=hop_length,
                        f0_autotune=f0_autotune,
                        f0_file=f0_file,
                    )

                if audio_output_paths:
                    sf.write(audio_output_paths, audio_opt, self.tgt_sr, format="WAV")

                if clean_audio:
                    cleaned_audio = self.remove_audio_noise(
                        audio_output_paths, clean_strength
                    )
                    if cleaned_audio is not None:
                        sf.write(
                            audio_output_paths, cleaned_audio, self.tgt_sr, format="WAV"
                        )
                if post_process:
                    audio_output_paths = self.post_process_audio(
                        audio_input=audio_output_paths,
                        sample_rate=self.tgt_sr,
                        reverb=reverb,
                        reverb_room_size=sliders["reverb_room_size"],
                        reverb_damping=sliders["reverb_damping"],
                        reverb_wet_level=sliders["reverb_wet_level"],
                        reverb_dry_level=sliders["reverb_dry_level"],
                        reverb_width=sliders["reverb_width"],
                        reverb_freeze_mode=sliders["reverb_freeze_mode"],
                        pitch_shift=pitch_shift,
                        pitch_shift_semitones=sliders["pitch_shift_semitones"],
                        limiter=limiter,
                        limiter_threshold=sliders["limiter_threshold"],
                        limiter_release=sliders["limiter_release"],
                        gain=gain,
                        gain_db=sliders["gain_db"],
                        distortion=distortion,
                        distortion_gain=sliders["distortion_gain"],
                        chorus=chorus,
                        chorus_rate=sliders["chorus_rate"],
                        chorus_depth=sliders["chorus_depth"],
                        chorus_delay=sliders["chorus_delay"],
                        chorus_feedback=sliders["chorus_feedback"],
                        chorus_mix=sliders["chorus_mix"],
                        bitcrush=bitcrush,
                        bitcrush_bit_depth=sliders["bitcrush_bit_depth"],
                        clipping=clipping,
                        clipping_threshold=sliders["clipping_threshold"],
                        compressor=compressor,
                        compressor_threshold=sliders["compressor_threshold"],
                        compressor_ratio=sliders["compressor_ratio"],
                        compressor_attack=sliders["compressor_attack"],
                        compressor_release=sliders["compressor_release"],
                        delay=delay,
                        delay_seconds=sliders["delay_seconds"],
                        delay_feedback=sliders["delay_feedback"],
                        delay_mix=sliders["delay_mix"],
                        audio_output_path=audio_output_paths,
                    )
                output_path_format = audio_output_paths.replace(
                    ".wav", f".{export_format.lower()}"
                )
                audio_output_paths = self.convert_audio_format(
                    audio_output_paths, output_path_format, export_format
                )
                print(f"Conversion completed at '{audio_output_paths}'.")
            elapsed_time = time.time() - start_time
            print(f"Batch conversion completed in {elapsed_time:.2f} seconds.")
            os.remove(pid_file_path)
        except Exception as error:
            print(f"An error occurred during audio conversion: {error}")
            print(traceback.format_exc())

    def get_vc(self, weight_root, sid):
        """
        Loads the voice conversion model and sets up the pipeline.

        Args:
            weight_root (str): Path to the model weights.
            sid (int): Speaker ID.
        """
        if sid == "" or sid == []:
            self.cleanup_model()
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        self.load_model(weight_root)

        if self.cpt is not None:
            self.setup_network()
            self.setup_vc_instance()

    def cleanup_model(self):
        """
        Cleans up the model and releases resources.
        """
        if self.hubert_model is not None:
            del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
            self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

        del self.net_g, self.cpt
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        self.cpt = None

    def load_model(self, weight_root):
        """
        Loads the model weights from the specified path.

        Args:
            weight_root (str): Path to the model weights.
        """
        self.cpt = (
            torch.load(weight_root, map_location="cpu")
            if os.path.isfile(weight_root)
            else None
        )

    def setup_network(self):
        """
        Sets up the network configuration based on the loaded checkpoint.
        """
        if self.cpt is not None:
            self.tgt_sr = self.cpt["config"][-1]
            self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
            self.use_f0 = self.cpt.get("f0", 1)

            self.version = self.cpt.get("version", "v1")
            self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
            self.net_g = Synthesizer(
                *self.cpt["config"],
                use_f0=self.use_f0,
                text_enc_hidden_dim=self.text_enc_hidden_dim,
                is_half=self.config.is_half,
            )
            del self.net_g.enc_q
            self.net_g.load_state_dict(self.cpt["weight"], strict=False)
            self.net_g.eval().to(self.config.device)
            self.net_g = (
                self.net_g.half() if self.config.is_half else self.net_g.float()
            )

    def setup_vc_instance(self):
        """
        Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
        """
        if self.cpt is not None:
            self.vc = VC(self.tgt_sr, self.config)
            self.n_spk = self.cpt["config"][-3]