Spaces:
Runtime error
Runtime error
File size: 7,016 Bytes
4efe6b5 2c02b19 4efe6b5 2c02b19 4efe6b5 2c02b19 4efe6b5 2c02b19 4efe6b5 2c02b19 4efe6b5 2c02b19 4efe6b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import math
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from typing import Optional
from rvc.lib.algorithm.generators import SineGen
from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2
from rvc.lib.algorithm.commons import init_weights
class SourceModuleHnNSF(torch.nn.Module):
"""
Source Module for harmonic-plus-noise excitation.
Args:
sample_rate (int): Sampling rate in Hz.
harmonic_num (int, optional): Number of harmonics above F0. Defaults to 0.
sine_amp (float, optional): Amplitude of sine source signal. Defaults to 0.1.
add_noise_std (float, optional): Standard deviation of additive Gaussian noise. Defaults to 0.003.
voiced_threshod (float, optional): Threshold to set voiced/unvoiced given F0. Defaults to 0.
is_half (bool, optional): Whether to use half precision. Defaults to True.
"""
def __init__(
self,
sample_rate,
harmonic_num=0,
sine_amp=0.1,
add_noise_std=0.003,
voiced_threshod=0,
is_half=True,
):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
self.is_half = is_half
self.l_sin_gen = SineGen(
sample_rate, harmonic_num, sine_amp, add_noise_std, voiced_threshod
)
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x: torch.Tensor, upsample_factor: int = 1):
sine_wavs, uv, _ = self.l_sin_gen(x, upsample_factor)
sine_wavs = sine_wavs.to(dtype=self.l_linear.weight.dtype)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
return sine_merge, None, None
class GeneratorNSF(torch.nn.Module):
"""
Generator for synthesizing audio using the NSF (Neural Source Filter) approach.
Args:
initial_channel (int): Number of channels in the initial convolutional layer.
resblock (str): Type of residual block to use (1 or 2).
resblock_kernel_sizes (list): Kernel sizes of the residual blocks.
resblock_dilation_sizes (list): Dilation rates of the residual blocks.
upsample_rates (list): Upsampling rates.
upsample_initial_channel (int): Number of channels in the initial upsampling layer.
upsample_kernel_sizes (list): Kernel sizes of the upsampling layers.
gin_channels (int): Number of channels for the global conditioning input.
sr (int): Sampling rate.
is_half (bool, optional): Whether to use half precision. Defaults to False.
"""
def __init__(
self,
initial_channel,
resblock,
resblock_kernel_sizes,
resblock_dilation_sizes,
upsample_rates,
upsample_initial_channel,
upsample_kernel_sizes,
gin_channels,
sr,
is_half=False,
):
super(GeneratorNSF, self).__init__()
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.f0_upsamp = torch.nn.Upsample(scale_factor=math.prod(upsample_rates))
self.m_source = SourceModuleHnNSF(
sample_rate=sr, harmonic_num=0, is_half=is_half
)
self.conv_pre = torch.nn.Conv1d(
initial_channel, upsample_initial_channel, 7, 1, padding=3
)
resblock_cls = ResBlock1 if resblock == "1" else ResBlock2
self.ups = torch.nn.ModuleList()
self.noise_convs = torch.nn.ModuleList()
channels = [
upsample_initial_channel // (2 ** (i + 1))
for i in range(len(upsample_rates))
]
stride_f0s = [
math.prod(upsample_rates[i + 1 :]) if i + 1 < len(upsample_rates) else 1
for i in range(len(upsample_rates))
]
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
torch.nn.ConvTranspose1d(
upsample_initial_channel // (2**i),
channels[i],
k,
u,
padding=(k - u) // 2,
)
)
)
self.noise_convs.append(
torch.nn.Conv1d(
1,
channels[i],
kernel_size=(stride_f0s[i] * 2 if stride_f0s[i] > 1 else 1),
stride=stride_f0s[i],
padding=(stride_f0s[i] // 2 if stride_f0s[i] > 1 else 0),
)
)
self.resblocks = torch.nn.ModuleList(
[
resblock_cls(channels[i], k, d)
for i in range(len(self.ups))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes)
]
)
self.conv_post = torch.nn.Conv1d(channels[-1], 1, 7, 1, padding=3, bias=False)
self.ups.apply(init_weights)
if gin_channels != 0:
self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)
self.upp = math.prod(upsample_rates)
self.lrelu_slope = LRELU_SLOPE
def forward(self, x, f0, g: Optional[torch.Tensor] = None):
har_source, _, _ = self.m_source(f0, self.upp)
har_source = har_source.transpose(1, 2)
x = self.conv_pre(x)
if g is not None:
x = x + self.cond(g)
for i, (ups, noise_convs) in enumerate(zip(self.ups, self.noise_convs)):
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope)
x = ups(x)
x = x + noise_convs(har_source)
xs = sum(
[
resblock(x)
for j, resblock in enumerate(self.resblocks)
if j in range(i * self.num_kernels, (i + 1) * self.num_kernels)
]
)
x = xs / self.num_kernels
x = torch.nn.functional.leaky_relu(x)
x = torch.tanh(self.conv_post(x))
return x
def remove_weight_norm(self):
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
def __prepare_scriptable__(self):
for l in self.ups:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
remove_weight_norm(l)
for l in self.resblocks:
for hook in l._forward_pre_hooks.values():
if (
hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
and hook.__class__.__name__ == "WeightNorm"
):
remove_weight_norm(l)
return self
|