File size: 10,175 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from typing import Optional
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm

from rvc.lib.algorithm.modules import WaveNet
from rvc.lib.algorithm.commons import get_padding, init_weights

LRELU_SLOPE = 0.1


# Helper functions
def create_conv1d_layer(channels, kernel_size, dilation):
    return weight_norm(
        torch.nn.Conv1d(
            channels,
            channels,
            kernel_size,
            1,
            dilation=dilation,
            padding=get_padding(kernel_size, dilation),
        )
    )


def apply_mask(tensor, mask):
    return tensor * mask if mask is not None else tensor


class ResBlockBase(torch.nn.Module):
    def __init__(self, channels, kernel_size, dilations):
        super(ResBlockBase, self).__init__()
        self.convs1 = torch.nn.ModuleList(
            [create_conv1d_layer(channels, kernel_size, d) for d in dilations]
        )
        self.convs1.apply(init_weights)

        self.convs2 = torch.nn.ModuleList(
            [create_conv1d_layer(channels, kernel_size, 1) for _ in dilations]
        )
        self.convs2.apply(init_weights)

    def forward(self, x, x_mask=None):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
            xt = apply_mask(xt, x_mask)
            xt = torch.nn.functional.leaky_relu(c1(xt), LRELU_SLOPE)
            xt = apply_mask(xt, x_mask)
            xt = c2(xt)
            x = xt + x
        return apply_mask(x, x_mask)

    def remove_weight_norm(self):
        for conv in self.convs1 + self.convs2:
            remove_weight_norm(conv)


class ResBlock1(ResBlockBase):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock1, self).__init__(channels, kernel_size, dilation)


class ResBlock2(ResBlockBase):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
        super(ResBlock2, self).__init__(channels, kernel_size, dilation)


class Log(torch.nn.Module):
    """Logarithm module for flow-based models.

    This module computes the logarithm of the input and its log determinant.
    During reverse, it computes the exponential of the input.
    """

    def forward(self, x, x_mask, reverse=False, **kwargs):
        """Forward pass.

        Args:
            x (torch.Tensor): Input tensor.
            x_mask (torch.Tensor): Mask tensor.
            reverse (bool, optional): Whether to reverse the operation. Defaults to False.
        """
        if not reverse:
            y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
            logdet = torch.sum(-y, [1, 2])
            return y, logdet
        else:
            x = torch.exp(x) * x_mask
            return x


class Flip(torch.nn.Module):
    """Flip module for flow-based models.

    This module flips the input along the time dimension.
    """

    def forward(self, x, *args, reverse=False, **kwargs):
        """Forward pass.

        Args:
            x (torch.Tensor): Input tensor.
            reverse (bool, optional): Whether to reverse the operation. Defaults to False.
        """
        x = torch.flip(x, [1])
        if not reverse:
            logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
            return x, logdet
        else:
            return x


class ElementwiseAffine(torch.nn.Module):
    """Elementwise affine transformation module for flow-based models.

    This module performs an elementwise affine transformation on the input.

    Args:
        channels (int): Number of channels.

    """

    def __init__(self, channels):
        super().__init__()
        self.channels = channels
        self.m = torch.nn.Parameter(torch.zeros(channels, 1))
        self.logs = torch.nn.Parameter(torch.zeros(channels, 1))

    def forward(self, x, x_mask, reverse=False, **kwargs):
        """Forward pass.

        Args:
            x (torch.Tensor): Input tensor.
            x_mask (torch.Tensor): Mask tensor.
            reverse (bool, optional): Whether to reverse the operation. Defaults to False.
        """
        if not reverse:
            y = self.m + torch.exp(self.logs) * x
            y = y * x_mask
            logdet = torch.sum(self.logs * x_mask, [1, 2])
            return y, logdet
        else:
            x = (x - self.m) * torch.exp(-self.logs) * x_mask
            return x


class ResidualCouplingBlock(torch.nn.Module):
    """Residual Coupling Block for normalizing flow.

    Args:
        channels (int): Number of channels in the input.
        hidden_channels (int): Number of hidden channels in the coupling layer.
        kernel_size (int): Kernel size of the convolutional layers.
        dilation_rate (int): Dilation rate of the convolutional layers.
        n_layers (int): Number of layers in the coupling layer.
        n_flows (int, optional): Number of coupling layers in the block. Defaults to 4.
        gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
    """

    def __init__(
        self,
        channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        n_flows=4,
        gin_channels=0,
    ):
        super(ResidualCouplingBlock, self).__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.n_flows = n_flows
        self.gin_channels = gin_channels

        self.flows = torch.nn.ModuleList()
        for i in range(n_flows):
            self.flows.append(
                ResidualCouplingLayer(
                    channels,
                    hidden_channels,
                    kernel_size,
                    dilation_rate,
                    n_layers,
                    gin_channels=gin_channels,
                    mean_only=True,
                )
            )
            self.flows.append(Flip())

    def forward(
        self,
        x: torch.Tensor,
        x_mask: torch.Tensor,
        g: Optional[torch.Tensor] = None,
        reverse: bool = False,
    ):
        if not reverse:
            for flow in self.flows:
                x, _ = flow(x, x_mask, g=g, reverse=reverse)
        else:
            for flow in reversed(self.flows):
                x = flow.forward(x, x_mask, g=g, reverse=reverse)
        return x

    def remove_weight_norm(self):
        """Removes weight normalization from the coupling layers."""
        for i in range(self.n_flows):
            self.flows[i * 2].remove_weight_norm()

    def __prepare_scriptable__(self):
        """Prepares the module for scripting."""
        for i in range(self.n_flows):
            for hook in self.flows[i * 2]._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(self.flows[i * 2])

        return self


class ResidualCouplingLayer(torch.nn.Module):
    """Residual coupling layer for flow-based models.

    Args:
        channels (int): Number of channels.
        hidden_channels (int): Number of hidden channels.
        kernel_size (int): Size of the convolutional kernel.
        dilation_rate (int): Dilation rate of the convolution.
        n_layers (int): Number of convolutional layers.
        p_dropout (float, optional): Dropout probability. Defaults to 0.
        gin_channels (int, optional): Number of conditioning channels. Defaults to 0.
        mean_only (bool, optional): Whether to use mean-only coupling. Defaults to False.
    """

    def __init__(
        self,
        channels,
        hidden_channels,
        kernel_size,
        dilation_rate,
        n_layers,
        p_dropout=0,
        gin_channels=0,
        mean_only=False,
    ):
        assert channels % 2 == 0, "channels should be divisible by 2"
        super().__init__()
        self.channels = channels
        self.hidden_channels = hidden_channels
        self.kernel_size = kernel_size
        self.dilation_rate = dilation_rate
        self.n_layers = n_layers
        self.half_channels = channels // 2
        self.mean_only = mean_only

        self.pre = torch.nn.Conv1d(self.half_channels, hidden_channels, 1)
        self.enc = WaveNet(
            hidden_channels,
            kernel_size,
            dilation_rate,
            n_layers,
            p_dropout=p_dropout,
            gin_channels=gin_channels,
        )
        self.post = torch.nn.Conv1d(
            hidden_channels, self.half_channels * (2 - mean_only), 1
        )
        self.post.weight.data.zero_()
        self.post.bias.data.zero_()

    def forward(self, x, x_mask, g=None, reverse=False):
        """Forward pass.

        Args:
            x (torch.Tensor): Input tensor of shape (batch_size, channels, time_steps).
            x_mask (torch.Tensor): Mask tensor of shape (batch_size, 1, time_steps).
            g (torch.Tensor, optional): Conditioning tensor of shape (batch_size, gin_channels, time_steps).
                Defaults to None.
            reverse (bool, optional): Whether to reverse the operation. Defaults to False.
        """
        x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
        h = self.pre(x0) * x_mask
        h = self.enc(h, x_mask, g=g)
        stats = self.post(h) * x_mask
        if not self.mean_only:
            m, logs = torch.split(stats, [self.half_channels] * 2, 1)
        else:
            m = stats
            logs = torch.zeros_like(m)

        if not reverse:
            x1 = m + x1 * torch.exp(logs) * x_mask
            x = torch.cat([x0, x1], 1)
            logdet = torch.sum(logs, [1, 2])
            return x, logdet
        else:
            x1 = (x1 - m) * torch.exp(-logs) * x_mask
            x = torch.cat([x0, x1], 1)
            return x

    def remove_weight_norm(self):
        """Remove weight normalization from the module."""
        self.enc.remove_weight_norm()