File size: 7,663 Bytes
4efe6b5
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
2c02b19
4efe6b5
 
 
 
2c02b19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4efe6b5
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
2c02b19
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c02b19
 
 
 
 
 
4efe6b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
from torch.nn.utils import remove_weight_norm
from torch.nn.utils.parametrizations import weight_norm
from typing import Optional

from rvc.lib.algorithm.residuals import LRELU_SLOPE, ResBlock1, ResBlock2
from rvc.lib.algorithm.commons import init_weights


class Generator(torch.nn.Module):
    """Generator for synthesizing audio. Optimized for performance and quality.

    Args:
        initial_channel (int): Number of channels in the initial convolutional layer.
        resblock (str): Type of residual block to use (1 or 2).
        resblock_kernel_sizes (list): Kernel sizes of the residual blocks.
        resblock_dilation_sizes (list): Dilation rates of the residual blocks.
        upsample_rates (list): Upsampling rates.
        upsample_initial_channel (int): Number of channels in the initial upsampling layer.
        upsample_kernel_sizes (list): Kernel sizes of the upsampling layers.
        gin_channels (int, optional): Number of channels for the global conditioning input. Defaults to 0.
    """

    def __init__(
        self,
        initial_channel,
        resblock,
        resblock_kernel_sizes,
        resblock_dilation_sizes,
        upsample_rates,
        upsample_initial_channel,
        upsample_kernel_sizes,
        gin_channels=0,
    ):
        super(Generator, self).__init__()
        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)
        self.conv_pre = torch.nn.Conv1d(
            initial_channel, upsample_initial_channel, 7, 1, padding=3
        )
        resblock = ResBlock1 if resblock == "1" else ResBlock2

        self.ups_and_resblocks = torch.nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups_and_resblocks.append(
                weight_norm(
                    torch.nn.ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.ups_and_resblocks.append(resblock(ch, k, d))

        self.conv_post = torch.nn.Conv1d(ch, 1, 7, 1, padding=3, bias=False)
        self.ups_and_resblocks.apply(init_weights)

        if gin_channels != 0:
            self.cond = torch.nn.Conv1d(gin_channels, upsample_initial_channel, 1)

        def forward(self, x: torch.Tensor, g: Optional[torch.Tensor] = None):
            x = self.conv_pre(x)
            if g is not None:
                x = x + self.cond(g)

            resblock_idx = 0
            for _ in range(self.num_upsamples):
                x = torch.nn.functional.leaky_relu(x, LRELU_SLOPE)
                x = self.ups_and_resblocks[resblock_idx](x)
                resblock_idx += 1
                xs = 0
                for _ in range(self.num_kernels):
                    xs += self.ups_and_resblocks[resblock_idx](x)
                    resblock_idx += 1
                x = xs / self.num_kernels

            x = torch.nn.functional.leaky_relu(x)
            x = self.conv_post(x)
            x = torch.tanh(x)

            return x

    def __prepare_scriptable__(self):
        """Prepares the module for scripting."""
        for l in self.ups_and_resblocks:
            for hook in l._forward_pre_hooks.values():
                if (
                    hook.__module__ == "torch.nn.utils.parametrizations.weight_norm"
                    and hook.__class__.__name__ == "WeightNorm"
                ):
                    torch.nn.utils.remove_weight_norm(l)
        return self

    def remove_weight_norm(self):
        """Removes weight normalization from the upsampling and residual blocks."""
        for l in self.ups_and_resblocks:
            remove_weight_norm(l)


class SineGen(torch.nn.Module):
    """Sine wave generator.

    Args:
        samp_rate (int): Sampling rate in Hz.
        harmonic_num (int, optional): Number of harmonic overtones. Defaults to 0.
        sine_amp (float, optional): Amplitude of sine waveform. Defaults to 0.1.
        noise_std (float, optional): Standard deviation of Gaussian noise. Defaults to 0.003.
        voiced_threshold (float, optional): F0 threshold for voiced/unvoiced classification. Defaults to 0.
        flag_for_pulse (bool, optional): Whether this SineGen is used inside PulseGen. Defaults to False.
    """

    def __init__(
        self,
        samp_rate,
        harmonic_num=0,
        sine_amp=0.1,
        noise_std=0.003,
        voiced_threshold=0,
        flag_for_pulse=False,
    ):
        super(SineGen, self).__init__()
        self.sine_amp = sine_amp
        self.noise_std = noise_std
        self.harmonic_num = harmonic_num
        self.dim = self.harmonic_num + 1
        self.sample_rate = samp_rate
        self.voiced_threshold = voiced_threshold

    def _f02uv(self, f0):
        """Converts F0 to voiced/unvoiced signal.

        Args:
            f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1)..
        """
        uv = torch.ones_like(f0)
        uv = uv * (f0 > self.voiced_threshold)
        return uv

    def forward(self, f0: torch.Tensor, upp: int):
        """Generates sine waves.

        Args:
            f0 (torch.Tensor): F0 tensor with shape (batch_size, length, 1).
            upp (int): Upsampling factor.
        """
        with torch.no_grad():
            f0 = f0[:, None].transpose(1, 2)
            f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
            f0_buf[:, :, 0] = f0[:, :, 0]
            f0_buf[:, :, 1:] = (
                f0_buf[:, :, 0:1]
                * torch.arange(2, self.harmonic_num + 2, device=f0.device)[
                    None, None, :
                ]
            )
            rad_values = (f0_buf / float(self.sample_rate)) % 1
            rand_ini = torch.rand(
                f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
            )
            rand_ini[:, 0] = 0
            rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
            tmp_over_one = torch.cumsum(rad_values, 1)
            tmp_over_one *= upp
            tmp_over_one = torch.nn.functional.interpolate(
                tmp_over_one.transpose(2, 1),
                scale_factor=float(upp),
                mode="linear",
                align_corners=True,
            ).transpose(2, 1)
            rad_values = torch.nn.functional.interpolate(
                rad_values.transpose(2, 1), scale_factor=float(upp), mode="nearest"
            ).transpose(2, 1)
            tmp_over_one %= 1
            tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
            cumsum_shift = torch.zeros_like(rad_values)
            cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
            sine_waves = torch.sin(
                torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * torch.pi
            )
            sine_waves = sine_waves * self.sine_amp
            uv = self._f02uv(f0)
            uv = torch.nn.functional.interpolate(
                uv.transpose(2, 1), scale_factor=float(upp), mode="nearest"
            ).transpose(2, 1)
            noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
            noise = noise_amp * torch.randn_like(sine_waves)
            sine_waves = sine_waves * uv + noise
        return sine_waves, uv, noise