Spaces:
Runtime error
Runtime error
File size: 42,418 Bytes
3a478bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
import os
import sys
import time
import torch
import librosa
import logging
import traceback
import numpy as np
import soundfile as sf
import noisereduce as nr
from pedalboard import (
Pedalboard,
Chorus,
Distortion,
Reverb,
PitchShift,
Limiter,
Gain,
Bitcrush,
Clipping,
Compressor,
Delay,
)
from scipy.io import wavfile
from audio_upscaler import upscale
now_dir = os.getcwd()
sys.path.append(now_dir)
from rvc.infer.pipeline import Pipeline as VC
from rvc.lib.utils import load_audio_infer, load_embedding
from rvc.lib.tools.split_audio import process_audio, merge_audio
from rvc.lib.algorithm.synthesizers import Synthesizer
from rvc.configs.config import Config
logging.getLogger("httpx").setLevel(logging.WARNING)
logging.getLogger("httpcore").setLevel(logging.WARNING)
logging.getLogger("faiss").setLevel(logging.WARNING)
logging.getLogger("faiss.loader").setLevel(logging.WARNING)
class VoiceConverter:
"""
A class for performing voice conversion using the Retrieval-Based Voice Conversion (RVC) method.
"""
def __init__(self):
"""
Initializes the VoiceConverter with default configuration, and sets up models and parameters.
"""
self.config = Config() # Load RVC configuration
self.hubert_model = (
None # Initialize the Hubert model (for embedding extraction)
)
self.last_embedder_model = None # Last used embedder model
self.tgt_sr = None # Target sampling rate for the output audio
self.net_g = None # Generator network for voice conversion
self.vc = None # Voice conversion pipeline instance
self.cpt = None # Checkpoint for loading model weights
self.version = None # Model version
self.n_spk = None # Number of speakers in the model
self.use_f0 = None # Whether the model uses F0
def load_hubert(self, embedder_model: str, embedder_model_custom: str = None):
"""
Loads the HuBERT model for speaker embedding extraction.
Args:
embedder_model (str): Path to the pre-trained HuBERT model.
embedder_model_custom (str): Path to the custom HuBERT model.
"""
self.hubert_model = load_embedding(embedder_model, embedder_model_custom)
self.hubert_model.to(self.config.device)
self.hubert_model = (
self.hubert_model.half()
if self.config.is_half
else self.hubert_model.float()
)
self.hubert_model.eval()
@staticmethod
def remove_audio_noise(input_audio_path, reduction_strength=0.7):
"""
Removes noise from an audio file using the NoiseReduce library.
Args:
input_audio_path (str): Path to the input audio file.
reduction_strength (float): Strength of the noise reduction. Default is 0.7.
"""
try:
rate, data = wavfile.read(input_audio_path)
reduced_noise = nr.reduce_noise(
y=data, sr=rate, prop_decrease=reduction_strength
)
return reduced_noise
except Exception as error:
print(f"An error occurred removing audio noise: {error}")
return None
@staticmethod
def convert_audio_format(input_path, output_path, output_format):
"""
Converts an audio file to a specified output format.
Args:
input_path (str): Path to the input audio file.
output_path (str): Path to the output audio file.
output_format (str): Desired audio format (e.g., "WAV", "MP3").
"""
try:
if output_format != "WAV":
print(f"Converting audio to {output_format} format...")
audio, sample_rate = librosa.load(input_path, sr=None)
common_sample_rates = [
8000,
11025,
12000,
16000,
22050,
24000,
32000,
44100,
48000,
]
target_sr = min(common_sample_rates, key=lambda x: abs(x - sample_rate))
audio = librosa.resample(
audio, orig_sr=sample_rate, target_sr=target_sr
)
sf.write(output_path, audio, target_sr, format=output_format.lower())
return output_path
except Exception as error:
print(f"An error occurred converting the audio format: {error}")
@staticmethod
def post_process_audio(
audio_input,
sample_rate,
reverb: bool,
reverb_room_size: float,
reverb_damping: float,
reverb_wet_level: float,
reverb_dry_level: float,
reverb_width: float,
reverb_freeze_mode: float,
pitch_shift: bool,
pitch_shift_semitones: int,
limiter: bool,
limiter_threshold: float,
limiter_release: float,
gain: bool,
gain_db: float,
distortion: bool,
distortion_gain: float,
chorus: bool,
chorus_rate: float,
chorus_depth: float,
chorus_delay: float,
chorus_feedback: float,
chorus_mix: float,
bitcrush: bool,
bitcrush_bit_depth: int,
clipping: bool,
clipping_threshold: float,
compressor: bool,
compressor_threshold: float,
compressor_ratio: float,
compressor_attack: float,
compressor_release: float,
delay: bool,
delay_seconds: float,
delay_feedback: float,
delay_mix: float,
audio_output_path: str,
):
board = Pedalboard()
if reverb:
reverb = Reverb(
room_size=reverb_room_size,
damping=reverb_damping,
wet_level=reverb_wet_level,
dry_level=reverb_dry_level,
width=reverb_width,
freeze_mode=reverb_freeze_mode,
)
board.append(reverb)
if pitch_shift:
pitch_shift = PitchShift(semitones=pitch_shift_semitones)
board.append(pitch_shift)
if limiter:
limiter = Limiter(
threshold_db=limiter_threshold, release_ms=limiter_release
)
board.append(limiter)
if gain:
gain = Gain(gain_db=gain_db)
board.append(gain)
if distortion:
distortion = Distortion(drive_db=distortion_gain)
board.append(distortion)
if chorus:
chorus = Chorus(
rate_hz=chorus_rate,
depth=chorus_depth,
centre_delay_ms=chorus_delay,
feedback=chorus_feedback,
mix=chorus_mix,
)
board.append(chorus)
if bitcrush:
bitcrush = Bitcrush(bit_depth=bitcrush_bit_depth)
board.append(bitcrush)
if clipping:
clipping = Clipping(threshold_db=clipping_threshold)
board.append(clipping)
if compressor:
compressor = Compressor(
threshold_db=compressor_threshold,
ratio=compressor_ratio,
attack_ms=compressor_attack,
release_ms=compressor_release,
)
board.append(compressor)
if delay:
delay = Delay(
delay_seconds=delay_seconds,
feedback=delay_feedback,
mix=delay_mix,
)
board.append(delay)
audio_input, sample_rate = librosa.load(audio_input, sr=sample_rate)
output = board(audio_input, sample_rate)
sf.write(audio_output_path, output, sample_rate, format="WAV")
return audio_output_path
def convert_audio(
self,
audio_input_path: str,
audio_output_path: str,
model_path: str,
index_path: str,
embedder_model: str,
pitch: int,
f0_file: str,
f0_method: str,
index_rate: float,
volume_envelope: int,
protect: float,
hop_length: int,
split_audio: bool,
f0_autotune: bool,
filter_radius: int,
embedder_model_custom: str,
clean_audio: bool,
clean_strength: float,
export_format: str,
upscale_audio: bool,
formant_shifting: bool,
formant_qfrency: float,
formant_timbre: float,
post_process: bool,
reverb: bool,
pitch_shift: bool,
limiter: bool,
gain: bool,
distortion: bool,
chorus: bool,
bitcrush: bool,
clipping: bool,
compressor: bool,
delay: bool,
sliders: dict,
resample_sr: int = 0,
sid: int = 0,
):
"""
Performs voice conversion on the input audio.
Args:
audio_input_path (str): Path to the input audio file.
audio_output_path (str): Path to the output audio file.
model_path (str): Path to the voice conversion model.
index_path (str): Path to the index file.
sid (int, optional): Speaker ID. Default is 0.
pitch (str, optional): Key for F0 up-sampling. Default is None.
f0_file (str, optional): Path to the F0 file. Default is None.
f0_method (str, optional): Method for F0 extraction. Default is None.
index_rate (float, optional): Rate for index matching. Default is None.
resample_sr (int, optional): Resample sampling rate. Default is 0.
volume_envelope (float, optional): RMS mix rate. Default is None.
protect (float, optional): Protection rate for certain audio segments. Default is None.
hop_length (int, optional): Hop length for audio processing. Default is None.
split_audio (bool, optional): Whether to split the audio for processing. Default is False.
f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
filter_radius (int, optional): Radius for filtering. Default is None.
embedder_model (str, optional): Path to the embedder model. Default is None.
embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
clean_audio (bool, optional): Whether to clean the audio. Default is False.
clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
export_format (str, optional): Format for exporting the audio. Default is "WAV".
upscale_audio (bool, optional): Whether to upscale the audio. Default is False.
formant_shift (bool, optional): Whether to shift the formants. Default is False.
formant_qfrency (float, optional): Formant frequency. Default is 1.0.
formant_timbre (float, optional): Formant timbre. Default is 1.0.
reverb (bool, optional): Whether to apply reverb. Default is False.
pitch_shift (bool, optional): Whether to apply pitch shift. Default is False.
limiter (bool, optional): Whether to apply a limiter. Default is False.
gain (bool, optional): Whether to apply gain. Default is False.
distortion (bool, optional): Whether to apply distortion. Default is False.
chorus (bool, optional): Whether to apply chorus. Default is False.
bitcrush (bool, optional): Whether to apply bitcrush. Default is False.
clipping (bool, optional): Whether to apply clipping. Default is False.
compressor (bool, optional): Whether to apply a compressor. Default is False.
delay (bool, optional): Whether to apply delay. Default is False.
sliders (dict, optional): Dictionary of effect parameters. Default is None.
"""
self.get_vc(model_path, sid)
try:
start_time = time.time()
print(f"Converting audio '{audio_input_path}'...")
if upscale_audio == True:
upscale(audio_input_path, audio_input_path)
audio = load_audio_infer(
audio_input_path,
16000,
formant_shifting,
formant_qfrency,
formant_timbre,
)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
if not self.hubert_model or embedder_model != self.last_embedder_model:
self.load_hubert(embedder_model, embedder_model_custom)
self.last_embedder_model = embedder_model
file_index = (
index_path.strip()
.strip('"')
.strip("\n")
.strip('"')
.strip()
.replace("trained", "added")
)
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
if split_audio:
result, new_dir_path = process_audio(audio_input_path)
if result == "Error":
return "Error with Split Audio", None
dir_path = (
new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
)
if dir_path:
paths = [
os.path.join(root, name)
for root, _, files in os.walk(dir_path, topdown=False)
for name in files
if name.endswith(".wav") and root == dir_path
]
try:
for path in paths:
self.convert_audio(
audio_input_path=path,
audio_output_path=path,
model_path=model_path,
index_path=index_path,
sid=sid,
pitch=pitch,
f0_file=None,
f0_method=f0_method,
index_rate=index_rate,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
protect=protect,
hop_length=hop_length,
split_audio=False,
f0_autotune=f0_autotune,
filter_radius=filter_radius,
export_format=export_format,
upscale_audio=upscale_audio,
embedder_model=embedder_model,
embedder_model_custom=embedder_model_custom,
clean_audio=clean_audio,
clean_strength=clean_strength,
formant_shifting=formant_shifting,
formant_qfrency=formant_qfrency,
formant_timbre=formant_timbre,
post_process=post_process,
reverb=reverb,
pitch_shift=pitch_shift,
limiter=limiter,
gain=gain,
distortion=distortion,
chorus=chorus,
bitcrush=bitcrush,
clipping=clipping,
compressor=compressor,
delay=delay,
sliders=sliders,
)
except Exception as error:
print(f"An error occurred processing the segmented audio: {error}")
print(traceback.format_exc())
return f"Error {error}"
print("Finished processing segmented audio, now merging audio...")
merge_timestamps_file = os.path.join(
os.path.dirname(new_dir_path),
f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
)
self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
os.remove(merge_timestamps_file)
if post_process:
audio_opt = self.post_process_audio(
audio_input=audio_opt,
sample_rate=self.tgt_sr,
reverb=reverb,
reverb_room_size=sliders[0],
reverb_damping=sliders[1],
reverb_wet_level=sliders[2],
reverb_dry_level=sliders[3],
reverb_width=sliders[4],
reverb_freeze_mode=sliders[5],
pitch_shift=pitch_shift,
pitch_shift_semitones=sliders[6],
limiter=limiter,
limiter_threshold=sliders[7],
limiter_release=sliders[8],
gain=gain,
gain_db=sliders[9],
distortion=distortion,
distortion_gain=sliders[10],
chorus=chorus,
chorus_rate=sliders[11],
chorus_depth=sliders[12],
chorus_delay=sliders[13],
chorus_feedback=sliders[14],
chorus_mix=sliders[15],
bitcrush=bitcrush,
bitcrush_bit_depth=sliders[16],
clipping=clipping,
clipping_threshold=sliders[17],
compressor=compressor,
compressor_threshold=sliders[18],
compressor_ratio=sliders[19],
compressor_attack=sliders[20],
compressor_release=sliders[21],
delay=delay,
delay_seconds=sliders[22],
delay_feedback=sliders[23],
delay_mix=sliders[24],
audio_output_path=audio_output_path,
)
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
else:
audio_opt = self.vc.pipeline(
model=self.hubert_model,
net_g=self.net_g,
sid=sid,
audio=audio,
input_audio_path=audio_input_path,
pitch=pitch,
f0_method=f0_method,
file_index=file_index,
index_rate=index_rate,
pitch_guidance=self.use_f0,
filter_radius=filter_radius,
tgt_sr=self.tgt_sr,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
version=self.version,
protect=protect,
hop_length=hop_length,
f0_autotune=f0_autotune,
f0_file=f0_file,
)
if audio_output_path:
sf.write(audio_output_path, audio_opt, self.tgt_sr, format="WAV")
if clean_audio:
cleaned_audio = self.remove_audio_noise(
audio_output_path, clean_strength
)
if cleaned_audio is not None:
sf.write(
audio_output_path, cleaned_audio, self.tgt_sr, format="WAV"
)
if post_process:
audio_output_path = self.post_process_audio(
audio_input=audio_output_path,
sample_rate=self.tgt_sr,
reverb=reverb,
reverb_room_size=sliders["reverb_room_size"],
reverb_damping=sliders["reverb_damping"],
reverb_wet_level=sliders["reverb_wet_level"],
reverb_dry_level=sliders["reverb_dry_level"],
reverb_width=sliders["reverb_width"],
reverb_freeze_mode=sliders["reverb_freeze_mode"],
pitch_shift=pitch_shift,
pitch_shift_semitones=sliders["pitch_shift_semitones"],
limiter=limiter,
limiter_threshold=sliders["limiter_threshold"],
limiter_release=sliders["limiter_release"],
gain=gain,
gain_db=sliders["gain_db"],
distortion=distortion,
distortion_gain=sliders["distortion_gain"],
chorus=chorus,
chorus_rate=sliders["chorus_rate"],
chorus_depth=sliders["chorus_depth"],
chorus_delay=sliders["chorus_delay"],
chorus_feedback=sliders["chorus_feedback"],
chorus_mix=sliders["chorus_mix"],
bitcrush=bitcrush,
bitcrush_bit_depth=sliders["bitcrush_bit_depth"],
clipping=clipping,
clipping_threshold=sliders["clipping_threshold"],
compressor=compressor,
compressor_threshold=sliders["compressor_threshold"],
compressor_ratio=sliders["compressor_ratio"],
compressor_attack=sliders["compressor_attack"],
compressor_release=sliders["compressor_release"],
delay=delay,
delay_seconds=sliders["delay_seconds"],
delay_feedback=sliders["delay_feedback"],
delay_mix=sliders["delay_mix"],
audio_output_path=audio_output_path,
)
output_path_format = audio_output_path.replace(
".wav", f".{export_format.lower()}"
)
audio_output_path = self.convert_audio_format(
audio_output_path, output_path_format, export_format
)
elapsed_time = time.time() - start_time
print(
f"Conversion completed at '{audio_output_path}' in {elapsed_time:.2f} seconds."
)
except Exception as error:
print(f"An error occurred during audio conversion: {error}")
print(traceback.format_exc())
def convert_audio_batch(
self,
audio_input_paths: str,
audio_output_path: str,
model_path: str,
index_path: str,
embedder_model: str,
pitch: int,
f0_file: str,
f0_method: str,
index_rate: float,
volume_envelope: int,
protect: float,
hop_length: int,
split_audio: bool,
f0_autotune: bool,
filter_radius: int,
embedder_model_custom: str,
clean_audio: bool,
clean_strength: float,
export_format: str,
upscale_audio: bool,
formant_shifting: bool,
formant_qfrency: float,
formant_timbre: float,
resample_sr: int = 0,
sid: int = 0,
pid_file_path: str = None,
post_process: bool = False,
reverb: bool = False,
pitch_shift: bool = False,
limiter: bool = False,
gain: bool = False,
distortion: bool = False,
chorus: bool = False,
bitcrush: bool = False,
clipping: bool = False,
compressor: bool = False,
delay: bool = False,
sliders: dict = None,
):
"""
Performs voice conversion on a batch of input audio files.
Args:
audio_input_paths (list): List of paths to the input audio files.
audio_output_path (str): Path to the output audio file.
model_path (str): Path to the voice conversion model.
index_path (str): Path to the index file.
sid (int, optional): Speaker ID. Default is 0.
pitch (str, optional): Key for F0 up-sampling. Default is None.
f0_file (str, optional): Path to the F0 file. Default is None.
f0_method (str, optional): Method for F0 extraction. Default is None.
index_rate (float, optional): Rate for index matching. Default is None.
resample_sr (int, optional): Resample sampling rate. Default is 0.
volume_envelope (float, optional): RMS mix rate. Default is None.
protect (float, optional): Protection rate for certain audio segments. Default is None.
hop_length (int, optional): Hop length for audio processing. Default is None.
split_audio (bool, optional): Whether to split the audio for processing. Default is False.
f0_autotune (bool, optional): Whether to use F0 autotune. Default is False.
filter_radius (int, optional): Radius for filtering. Default is None.
embedder_model (str, optional): Path to the embedder model. Default is None.
embedder_model_custom (str, optional): Path to the custom embedder model. Default is None.
clean_audio (bool, optional): Whether to clean the audio. Default is False.
clean_strength (float, optional): Strength of the audio cleaning. Default is 0.7.
export_format (str, optional): Format for exporting the audio. Default is "WAV".
upscale_audio (bool, optional): Whether to upscale the audio. Default is False.
formant_shift (bool, optional): Whether to shift the formants. Default is False.
formant_qfrency (float, optional): Formant frequency. Default is 1.0.
formant_timbre (float, optional): Formant timbre. Default is 1.0.
pid_file_path (str, optional): Path to the PID file. Default is None.
post_process (bool, optional): Whether to apply post-processing effects. Default is False.
reverb (bool, optional): Whether to apply reverb. Default is False.
pitch_shift (bool, optional): Whether to apply pitch shift. Default is False.
limiter (bool, optional): Whether to apply a limiter. Default is False.
gain (bool, optional): Whether to apply gain. Default is False.
distortion (bool, optional): Whether to apply distortion. Default is False.
chorus (bool, optional): Whether to apply chorus. Default is False.
bitcrush (bool, optional): Whether to apply bitcrush. Default is False.
clipping (bool, optional): Whether to apply clipping. Default is False.
compressor (bool, optional): Whether to apply a compressor. Default is False.
delay (bool, optional): Whether to apply delay. Default is False.
sliders (dict, optional): Dictionary of effect parameters. Default is None.
"""
pid = os.getpid()
with open(pid_file_path, "w") as pid_file:
pid_file.write(str(pid))
try:
if not self.hubert_model or embedder_model != self.last_embedder_model:
self.load_hubert(embedder_model, embedder_model_custom)
self.last_embedder_model = embedder_model
self.get_vc(model_path, sid)
file_index = (
index_path.strip()
.strip('"')
.strip("\n")
.strip('"')
.strip()
.replace("trained", "added")
)
start_time = time.time()
print(f"Converting audio batch '{audio_input_paths}'...")
audio_files = [
f
for f in os.listdir(audio_input_paths)
if f.endswith((".mp3", ".wav", ".flac", ".m4a", ".ogg", ".opus"))
]
print(f"Detected {len(audio_files)} audio files for inference.")
for i, audio_input_path in enumerate(audio_files):
audio_output_paths = os.path.join(
audio_output_path,
f"{os.path.splitext(os.path.basename(audio_input_path))[0]}_output.{export_format.lower()}",
)
if os.path.exists(audio_output_paths):
continue
print(f"Converting audio '{audio_input_path}'...")
audio_input_path = os.path.join(audio_input_paths, audio_input_path)
if upscale_audio == True:
upscale(audio_input_path, audio_input_path)
audio = load_audio_infer(
audio_input_path,
16000,
formant_shifting,
formant_qfrency,
formant_timbre,
)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
if self.tgt_sr != resample_sr >= 16000:
self.tgt_sr = resample_sr
if split_audio:
result, new_dir_path = process_audio(audio_input_path)
if result == "Error":
return "Error with Split Audio", None
dir_path = (
new_dir_path.strip().strip('"').strip("\n").strip('"').strip()
)
if dir_path:
paths = [
os.path.join(root, name)
for root, _, files in os.walk(dir_path, topdown=False)
for name in files
if name.endswith(".wav") and root == dir_path
]
try:
for path in paths:
self.convert_audio(
audio_input_path=path,
audio_output_path=path,
model_path=model_path,
index_path=index_path,
sid=sid,
pitch=pitch,
f0_file=None,
f0_method=f0_method,
index_rate=index_rate,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
protect=protect,
hop_length=hop_length,
split_audio=False,
f0_autotune=f0_autotune,
filter_radius=filter_radius,
export_format=export_format,
upscale_audio=upscale_audio,
embedder_model=embedder_model,
embedder_model_custom=embedder_model_custom,
clean_audio=clean_audio,
clean_strength=clean_strength,
formant_shifting=formant_shifting,
formant_qfrency=formant_qfrency,
formant_timbre=formant_timbre,
post_process=post_process,
reverb=reverb,
pitch_shift=pitch_shift,
limiter=limiter,
gain=gain,
distortion=distortion,
chorus=chorus,
bitcrush=bitcrush,
clipping=clipping,
compressor=compressor,
delay=delay,
sliders=sliders,
)
except Exception as error:
print(
f"An error occurred processing the segmented audio: {error}"
)
print(traceback.format_exc())
return f"Error {error}"
print("Finished processing segmented audio, now merging audio...")
merge_timestamps_file = os.path.join(
os.path.dirname(new_dir_path),
f"{os.path.basename(audio_input_path).split('.')[0]}_timestamps.txt",
)
self.tgt_sr, audio_opt = merge_audio(merge_timestamps_file)
os.remove(merge_timestamps_file)
if post_process:
audio_opt = self.post_process_audio(
audio_input=audio_opt,
sample_rate=self.tgt_sr,
reverb=reverb,
reverb_room_size=sliders[0],
reverb_damping=sliders[1],
reverb_wet_level=sliders[2],
reverb_dry_level=sliders[3],
reverb_width=sliders[4],
reverb_freeze_mode=sliders[5],
pitch_shift=pitch_shift,
pitch_shift_semitones=sliders[6],
limiter=limiter,
limiter_threshold=sliders[7],
limiter_release=sliders[8],
gain=gain,
gain_db=sliders[9],
distortion=distortion,
distortion_gain=sliders[10],
chorus=chorus,
chorus_rate=sliders[11],
chorus_depth=sliders[12],
chorus_delay=sliders[13],
chorus_feedback=sliders[14],
chorus_mix=sliders[15],
bitcrush=bitcrush,
bitcrush_bit_depth=sliders[16],
clipping=clipping,
clipping_threshold=sliders[17],
compressor=compressor,
compressor_threshold=sliders[18],
compressor_ratio=sliders[19],
compressor_attack=sliders[20],
compressor_release=sliders[21],
delay=delay,
delay_seconds=sliders[22],
delay_feedback=sliders[23],
delay_mix=sliders[24],
audio_output_path=audio_output_paths,
)
sf.write(
audio_output_paths, audio_opt, self.tgt_sr, format="WAV"
)
else:
audio_opt = self.vc.pipeline(
model=self.hubert_model,
net_g=self.net_g,
sid=sid,
audio=audio,
input_audio_path=audio_input_path,
pitch=pitch,
f0_method=f0_method,
file_index=file_index,
index_rate=index_rate,
pitch_guidance=self.use_f0,
filter_radius=filter_radius,
tgt_sr=self.tgt_sr,
resample_sr=resample_sr,
volume_envelope=volume_envelope,
version=self.version,
protect=protect,
hop_length=hop_length,
f0_autotune=f0_autotune,
f0_file=f0_file,
)
if audio_output_paths:
sf.write(audio_output_paths, audio_opt, self.tgt_sr, format="WAV")
if clean_audio:
cleaned_audio = self.remove_audio_noise(
audio_output_paths, clean_strength
)
if cleaned_audio is not None:
sf.write(
audio_output_paths, cleaned_audio, self.tgt_sr, format="WAV"
)
if post_process:
audio_output_paths = self.post_process_audio(
audio_input=audio_output_paths,
sample_rate=self.tgt_sr,
reverb=reverb,
reverb_room_size=sliders["reverb_room_size"],
reverb_damping=sliders["reverb_damping"],
reverb_wet_level=sliders["reverb_wet_level"],
reverb_dry_level=sliders["reverb_dry_level"],
reverb_width=sliders["reverb_width"],
reverb_freeze_mode=sliders["reverb_freeze_mode"],
pitch_shift=pitch_shift,
pitch_shift_semitones=sliders["pitch_shift_semitones"],
limiter=limiter,
limiter_threshold=sliders["limiter_threshold"],
limiter_release=sliders["limiter_release"],
gain=gain,
gain_db=sliders["gain_db"],
distortion=distortion,
distortion_gain=sliders["distortion_gain"],
chorus=chorus,
chorus_rate=sliders["chorus_rate"],
chorus_depth=sliders["chorus_depth"],
chorus_delay=sliders["chorus_delay"],
chorus_feedback=sliders["chorus_feedback"],
chorus_mix=sliders["chorus_mix"],
bitcrush=bitcrush,
bitcrush_bit_depth=sliders["bitcrush_bit_depth"],
clipping=clipping,
clipping_threshold=sliders["clipping_threshold"],
compressor=compressor,
compressor_threshold=sliders["compressor_threshold"],
compressor_ratio=sliders["compressor_ratio"],
compressor_attack=sliders["compressor_attack"],
compressor_release=sliders["compressor_release"],
delay=delay,
delay_seconds=sliders["delay_seconds"],
delay_feedback=sliders["delay_feedback"],
delay_mix=sliders["delay_mix"],
audio_output_path=audio_output_paths,
)
output_path_format = audio_output_paths.replace(
".wav", f".{export_format.lower()}"
)
audio_output_paths = self.convert_audio_format(
audio_output_paths, output_path_format, export_format
)
print(f"Conversion completed at '{audio_output_paths}'.")
elapsed_time = time.time() - start_time
print(f"Batch conversion completed in {elapsed_time:.2f} seconds.")
os.remove(pid_file_path)
except Exception as error:
print(f"An error occurred during audio conversion: {error}")
print(traceback.format_exc())
def get_vc(self, weight_root, sid):
"""
Loads the voice conversion model and sets up the pipeline.
Args:
weight_root (str): Path to the model weights.
sid (int): Speaker ID.
"""
if sid == "" or sid == []:
self.cleanup_model()
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.load_model(weight_root)
if self.cpt is not None:
self.setup_network()
self.setup_vc_instance()
def cleanup_model(self):
"""
Cleans up the model and releases resources.
"""
if self.hubert_model is not None:
del self.net_g, self.n_spk, self.vc, self.hubert_model, self.tgt_sr
self.hubert_model = self.net_g = self.n_spk = self.vc = self.tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
del self.net_g, self.cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
self.cpt = None
def load_model(self, weight_root):
"""
Loads the model weights from the specified path.
Args:
weight_root (str): Path to the model weights.
"""
self.cpt = (
torch.load(weight_root, map_location="cpu")
if os.path.isfile(weight_root)
else None
)
def setup_network(self):
"""
Sets up the network configuration based on the loaded checkpoint.
"""
if self.cpt is not None:
self.tgt_sr = self.cpt["config"][-1]
self.cpt["config"][-3] = self.cpt["weight"]["emb_g.weight"].shape[0]
self.use_f0 = self.cpt.get("f0", 1)
self.version = self.cpt.get("version", "v1")
self.text_enc_hidden_dim = 768 if self.version == "v2" else 256
self.net_g = Synthesizer(
*self.cpt["config"],
use_f0=self.use_f0,
text_enc_hidden_dim=self.text_enc_hidden_dim,
is_half=self.config.is_half,
)
del self.net_g.enc_q
self.net_g.load_state_dict(self.cpt["weight"], strict=False)
self.net_g.eval().to(self.config.device)
self.net_g = (
self.net_g.half() if self.config.is_half else self.net_g.float()
)
def setup_vc_instance(self):
"""
Sets up the voice conversion pipeline instance based on the target sampling rate and configuration.
"""
if self.cpt is not None:
self.vc = VC(self.tgt_sr, self.config)
self.n_spk = self.cpt["config"][-3]
|