Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from typing import List, Optional | |
def init_weights(m, mean=0.0, std=0.01): | |
""" | |
Initialize the weights of a module. | |
Args: | |
m: The module to initialize. | |
mean: The mean of the normal distribution. | |
std: The standard deviation of the normal distribution. | |
""" | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
""" | |
Calculate the padding needed for a convolution. | |
Args: | |
kernel_size: The size of the kernel. | |
dilation: The dilation of the convolution. | |
""" | |
return int((kernel_size * dilation - dilation) / 2) | |
def convert_pad_shape(pad_shape): | |
""" | |
Convert the pad shape to a list of integers. | |
Args: | |
pad_shape: The pad shape.. | |
""" | |
l = pad_shape[::-1] | |
pad_shape = [item for sublist in l for item in sublist] | |
return pad_shape | |
def kl_divergence(m_p, logs_p, m_q, logs_q): | |
""" | |
Calculate the KL divergence between two distributions. | |
Args: | |
m_p: The mean of the first distribution. | |
logs_p: The log of the standard deviation of the first distribution. | |
m_q: The mean of the second distribution. | |
logs_q: The log of the standard deviation of the second distribution. | |
""" | |
kl = (logs_q - logs_p) - 0.5 | |
kl += ( | |
0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) | |
) | |
return kl | |
def slice_segments( | |
x: torch.Tensor, ids_str: torch.Tensor, segment_size: int = 4, dim: int = 2 | |
): | |
""" | |
Slice segments from a tensor, handling tensors with different numbers of dimensions. | |
Args: | |
x (torch.Tensor): The tensor to slice. | |
ids_str (torch.Tensor): The starting indices of the segments. | |
segment_size (int, optional): The size of each segment. Defaults to 4. | |
dim (int, optional): The dimension to slice across (2D or 3D tensors). Defaults to 2. | |
""" | |
if dim == 2: | |
ret = torch.zeros_like(x[:, :segment_size]) | |
elif dim == 3: | |
ret = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
idx_str = ids_str[i].item() | |
idx_end = idx_str + segment_size | |
if dim == 2: | |
ret[i] = x[i, idx_str:idx_end] | |
else: | |
ret[i] = x[i, :, idx_str:idx_end] | |
return ret | |
def rand_slice_segments(x, x_lengths=None, segment_size=4): | |
""" | |
Randomly slice segments from a tensor. | |
Args: | |
x: The tensor to slice. | |
x_lengths: The lengths of the sequences. | |
segment_size: The size of each segment. | |
""" | |
b, d, t = x.size() | |
if x_lengths is None: | |
x_lengths = t | |
ids_str_max = x_lengths - segment_size + 1 | |
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) | |
ret = slice_segments(x, ids_str, segment_size, dim=3) | |
return ret, ids_str | |
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): | |
""" | |
Generate a 1D timing signal. | |
Args: | |
length: The length of the signal. | |
channels: The number of channels of the signal. | |
min_timescale: The minimum timescale. | |
max_timescale: The maximum timescale. | |
""" | |
position = torch.arange(length, dtype=torch.float) | |
num_timescales = channels // 2 | |
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / ( | |
num_timescales - 1 | |
) | |
inv_timescales = min_timescale * torch.exp( | |
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment | |
) | |
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) | |
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) | |
signal = torch.nn.functional.pad(signal, [0, 0, 0, channels % 2]) | |
signal = signal.view(1, channels, length) | |
return signal | |
def subsequent_mask(length): | |
""" | |
Generate a subsequent mask. | |
Args: | |
length: The length of the sequence. | |
""" | |
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) | |
return mask | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
""" | |
Fused add tanh sigmoid multiply operation. | |
Args: | |
input_a: The first input tensor. | |
input_b: The second input tensor. | |
n_channels: The number of channels. | |
""" | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
# Zluda, same as previous, but without jit.script | |
def fused_add_tanh_sigmoid_multiply_no_jit(input_a, input_b, n_channels): | |
""" | |
Fused add tanh sigmoid multiply operation. | |
Args: | |
input_a: The first input tensor. | |
input_b: The second input tensor. | |
n_channels: The number of channels. | |
""" | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
def convert_pad_shape(pad_shape: List[List[int]]) -> List[int]: | |
""" | |
Convert the pad shape to a list of integers. | |
Args: | |
pad_shape: The pad shape. | |
""" | |
return torch.tensor(pad_shape).flip(0).reshape(-1).int().tolist() | |
def sequence_mask(length: torch.Tensor, max_length: Optional[int] = None): | |
""" | |
Generate a sequence mask. | |
Args: | |
length: The lengths of the sequences. | |
max_length: The maximum length of the sequences. | |
""" | |
if max_length is None: | |
max_length = length.max() | |
x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
return x.unsqueeze(0) < length.unsqueeze(1) | |
def clip_grad_value(parameters, clip_value, norm_type=2): | |
""" | |
Clip the gradients of a list of parameters. | |
Args: | |
parameters: The list of parameters to clip. | |
clip_value: The maximum value of the gradients. | |
norm_type: The type of norm to use for clipping. | |
""" | |
if isinstance(parameters, torch.Tensor): | |
parameters = [parameters] | |
parameters = list(filter(lambda p: p.grad is not None, parameters)) | |
norm_type = float(norm_type) | |
if clip_value is not None: | |
clip_value = float(clip_value) | |
total_norm = 0 | |
for p in parameters: | |
param_norm = p.grad.data.norm(norm_type) | |
total_norm += param_norm.item() ** norm_type | |
if clip_value is not None: | |
p.grad.data.clamp_(min=-clip_value, max=clip_value) | |
total_norm = total_norm ** (1.0 / norm_type) | |
return total_norm | |