Spaces:
Runtime error
Runtime error
import os | |
import sys | |
import time | |
import tqdm | |
import torch | |
import torchcrepe | |
import numpy as np | |
from multiprocessing import Pool | |
from functools import partial | |
current_directory = os.getcwd() | |
sys.path.append(current_directory) | |
from rvc.lib.utils import load_audio | |
from rvc.lib.predictors.RMVPE import RMVPE0Predictor | |
# Parse command line arguments | |
exp_dir = str(sys.argv[1]) | |
f0_method = str(sys.argv[2]) | |
hop_length = int(sys.argv[3]) | |
num_processes = int(sys.argv[4]) | |
gpus = str(sys.argv[5]) # - = Use CPU | |
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",") | |
class FeatureInput: | |
"""Class for F0 extraction.""" | |
def __init__(self, sample_rate=16000, hop_size=160, device="cpu"): | |
self.fs = sample_rate | |
self.hop = hop_size | |
self.f0_bin = 256 | |
self.f0_max = 1100.0 | |
self.f0_min = 50.0 | |
self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700) | |
self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700) | |
self.device = device | |
self.model_rmvpe = RMVPE0Predictor( | |
os.path.join("rvc", "models", "predictors", "rmvpe.pt"), | |
is_half=False, | |
device=device, | |
) | |
def compute_f0(self, np_arr, f0_method, hop_length): | |
"""Extract F0 using the specified method.""" | |
p_len = np_arr.shape[0] // self.hop | |
if f0_method == "crepe": | |
f0 = self.get_crepe(np_arr, p_len, hop_length) | |
elif f0_method == "rmvpe": | |
f0 = self.model_rmvpe.infer_from_audio(np_arr, thred=0.03) | |
else: | |
raise ValueError(f"Unknown F0 method: {f0_method}") | |
return f0 | |
def get_crepe(self, x, p_len, hop_length): | |
"""Extract F0 using CREPE.""" | |
audio = torch.from_numpy(x.astype(np.float32)).to(self.device) | |
audio /= torch.quantile(torch.abs(audio), 0.999) | |
audio = torch.unsqueeze(audio, dim=0) | |
pitch = torchcrepe.predict( | |
audio, | |
self.fs, | |
hop_length, | |
self.f0_min, | |
self.f0_max, | |
"full", | |
batch_size=hop_length * 2, | |
device=self.device, | |
pad=True, | |
) | |
source = pitch.squeeze(0).cpu().float().numpy() | |
source[source < 0.001] = np.nan | |
target = np.interp( | |
np.arange(0, len(source) * p_len, len(source)) / p_len, | |
np.arange(0, len(source)), | |
source, | |
) | |
return np.nan_to_num(target) | |
def coarse_f0(self, f0): | |
"""Convert F0 to coarse F0.""" | |
f0_mel = 1127 * np.log(1 + f0 / 700) | |
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - self.f0_mel_min) * ( | |
self.f0_bin - 2 | |
) / (self.f0_mel_max - self.f0_mel_min) + 1 | |
f0_mel[f0_mel <= 1] = 1 | |
f0_mel[f0_mel > self.f0_bin - 1] = self.f0_bin - 1 | |
f0_coarse = np.rint(f0_mel).astype(int) | |
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, ( | |
f0_coarse.max(), | |
f0_coarse.min(), | |
) | |
return f0_coarse | |
def process_file(self, file_info, f0_method, hop_length): | |
"""Process a single audio file for F0 extraction.""" | |
inp_path, opt_path1, opt_path2, np_arr = file_info | |
if os.path.exists(opt_path1 + ".npy") and os.path.exists(opt_path2 + ".npy"): | |
return | |
try: | |
feature_pit = self.compute_f0(np_arr, f0_method, hop_length) | |
np.save(opt_path2, feature_pit, allow_pickle=False) | |
coarse_pit = self.coarse_f0(feature_pit) | |
np.save(opt_path1, coarse_pit, allow_pickle=False) | |
except Exception as error: | |
print(f"An error occurred extracting file {inp_path}: {error}") | |
def process_files(self, files, f0_method, hop_length, pbar): | |
"""Process multiple files.""" | |
for file_info in files: | |
self.process_file(file_info, f0_method, hop_length) | |
pbar.update() | |
def main(exp_dir, f0_method, hop_length, num_processes, gpus): | |
paths = [] | |
input_root = os.path.join(exp_dir, "sliced_audios_16k") | |
output_root1 = os.path.join(exp_dir, "f0") | |
output_root2 = os.path.join(exp_dir, "f0_voiced") | |
os.makedirs(output_root1, exist_ok=True) | |
os.makedirs(output_root2, exist_ok=True) | |
for name in sorted(os.listdir(input_root)): | |
if "spec" in name: | |
continue | |
input_path = os.path.join(input_root, name) | |
output_path1 = os.path.join(output_root1, name) | |
output_path2 = os.path.join(output_root2, name) | |
np_arr = load_audio(input_path, 16000) | |
paths.append([input_path, output_path1, output_path2, np_arr]) | |
print(f"Starting extraction with {num_processes} cores and {f0_method}...") | |
start_time = time.time() | |
if gpus != "-": | |
gpus = gpus.split("-") | |
num_gpus = len(gpus) | |
process_partials = [] | |
pbar = tqdm.tqdm(total=len(paths), desc="Pitch Extraction") | |
for idx, gpu in enumerate(gpus): | |
device = f"cuda:{gpu}" | |
if torch.cuda.is_available() and torch.cuda.device_count() > idx: | |
try: | |
feature_input = FeatureInput(device=device) | |
part_paths = paths[idx::num_gpus] | |
process_partials.append((feature_input, part_paths)) | |
except Exception as error: | |
print( | |
f"Oops, there was an issue initializing GPU {device} ({error}). Maybe you don't have a GPU? No worries, switching to CPU for now." | |
) | |
feature_input = FeatureInput(device="cpu") | |
part_paths = paths[idx::num_gpus] | |
process_partials.append((feature_input, part_paths)) | |
else: | |
print(f"GPU {device} is not available. Switching to CPU.") | |
feature_input = FeatureInput(device="cpu") | |
part_paths = paths[idx::num_gpus] | |
process_partials.append((feature_input, part_paths)) | |
# Process each part with the corresponding GPU or CPU | |
for feature_input, part_paths in process_partials: | |
feature_input.process_files(part_paths, f0_method, hop_length, pbar) | |
pbar.close() | |
else: | |
# Use multiprocessing Pool for parallel processing with progress bar | |
feature_input = FeatureInput(device="cpu") | |
with tqdm.tqdm(total=len(paths), desc="Pitch Extraction") as pbar: | |
pool = Pool(processes=num_processes) | |
process_file_partial = partial( | |
feature_input.process_file, f0_method=f0_method, hop_length=hop_length | |
) | |
for _ in pool.imap_unordered(process_file_partial, paths): | |
pbar.update() | |
pool.close() | |
pool.join() | |
elapsed_time = time.time() - start_time | |
print(f"Pitch extraction completed in {elapsed_time:.2f} seconds.") | |
if __name__ == "__main__": | |
main(exp_dir, f0_method, hop_length, num_processes, gpus) |