PyTorch Model
Browse files
Model.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def gather_last_relevant_hidden(hiddens, seq_lens):
|
9 |
+
"""Extract and collect the last relevant
|
10 |
+
hidden state based on the sequence length."""
|
11 |
+
seq_lens = seq_lens.long().detach().cpu().numpy() - 1
|
12 |
+
out = []
|
13 |
+
for batch_index, column_index in enumerate(seq_lens):
|
14 |
+
out.append(hiddens[batch_index, column_index])
|
15 |
+
return torch.stack(out)
|
16 |
+
|
17 |
+
|
18 |
+
class SkimlitModel(nn.Module):
|
19 |
+
def __init__(self, embedding_dim, vocab_size, hidden_dim, n_layers, linear_output, num_classes, pretrained_embeddings=None, padding_idx=0):
|
20 |
+
super(SkimlitModel, self).__init__()
|
21 |
+
|
22 |
+
# Initalizing embeddings
|
23 |
+
if pretrained_embeddings is None:
|
24 |
+
self.embeddings = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim)
|
25 |
+
else:
|
26 |
+
pretrained_embeddings = torch.from_numpy(pretrained_embeddings).float()
|
27 |
+
self.embeddings = nn.Embedding(num_embeddings=vocab_size, embedding_dim=embedding_dim, _weight=pretrained_embeddings, padding_idx=padding_idx)
|
28 |
+
|
29 |
+
# LSTM layers
|
30 |
+
self.lstm1 = nn.LSTM(embedding_dim, hidden_dim, num_layers=n_layers, batch_first=True, bidirectional=True)
|
31 |
+
|
32 |
+
# FC layers
|
33 |
+
self.fc_text = nn.Linear(2*hidden_dim, linear_output)
|
34 |
+
|
35 |
+
self.fc_line_num = nn.Linear(20, 64)
|
36 |
+
self.fc_total_line = nn.Linear(24, 64)
|
37 |
+
|
38 |
+
self.fc_final = nn.Linear((64+64+linear_output), num_classes)
|
39 |
+
self.dropout = nn.Dropout(0.3)
|
40 |
+
|
41 |
+
def forward(self, inputs):
|
42 |
+
x_in, seq_lens, line_nums, total_lines = inputs
|
43 |
+
x_in = self.embeddings(x_in)
|
44 |
+
|
45 |
+
# RNN outputs
|
46 |
+
out, b_n = self.lstm1(x_in)
|
47 |
+
x_1 = gather_last_relevant_hidden(hiddens=out, seq_lens=seq_lens)
|
48 |
+
|
49 |
+
# FC layers output
|
50 |
+
x_1 = F.relu(self.fc_text(x_1))
|
51 |
+
x_2 = F.relu(self.fc_line_num(line_nums))
|
52 |
+
x_3 = F.relu(self.fc_total_line(total_lines))
|
53 |
+
|
54 |
+
x = torch.cat((x_1, x_2, x_3), dim=1)
|
55 |
+
x = self.dropout(x)
|
56 |
+
x = self.fc_final(x)
|
57 |
+
return x
|