Wanlau commited on
Commit
1a4ac1a
1 Parent(s): 7d06d96

Add application files

Browse files
.gitignore ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # Created by https://www.toptal.com/developers/gitignore/api/python
3
+ # Edit at https://www.toptal.com/developers/gitignore?templates=python
4
+
5
+ ### Python ###
6
+ # Byte-compiled / optimized / DLL files
7
+ __pycache__/
8
+ *.py[cod]
9
+ *$py.class
10
+
11
+ # C extensions
12
+ *.so
13
+
14
+ # Distribution / packaging
15
+ .Python
16
+ build/
17
+ develop-eggs/
18
+ dist/
19
+ downloads/
20
+ eggs/
21
+ .eggs/
22
+ lib/
23
+ lib64/
24
+ parts/
25
+ sdist/
26
+ var/
27
+ wheels/
28
+ pip-wheel-metadata/
29
+ share/python-wheels/
30
+ *.egg-info/
31
+ .installed.cfg
32
+ *.egg
33
+ MANIFEST
34
+
35
+ # PyInstaller
36
+ # Usually these files are written by a python script from a template
37
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
38
+ *.manifest
39
+ *.spec
40
+
41
+ # Installer logs
42
+ pip-log.txt
43
+ pip-delete-this-directory.txt
44
+
45
+ # Unit test / coverage reports
46
+ htmlcov/
47
+ .tox/
48
+ .nox/
49
+ .coverage
50
+ .coverage.*
51
+ .cache
52
+ nosetests.xml
53
+ coverage.xml
54
+ *.cover
55
+ *.py,cover
56
+ .hypothesis/
57
+ .pytest_cache/
58
+ pytestdebug.log
59
+
60
+ # Translations
61
+ *.mo
62
+ *.pot
63
+
64
+ # Django stuff:
65
+ *.log
66
+ local_settings.py
67
+ db.sqlite3
68
+ db.sqlite3-journal
69
+
70
+ # Flask stuff:
71
+ instance/
72
+ .webassets-cache
73
+
74
+ # Scrapy stuff:
75
+ .scrapy
76
+
77
+ # Sphinx documentation
78
+ docs/_build/
79
+ doc/_build/
80
+
81
+ # PyBuilder
82
+ target/
83
+
84
+ # Jupyter Notebook
85
+ .ipynb_checkpoints
86
+
87
+ # IPython
88
+ profile_default/
89
+ ipython_config.py
90
+
91
+ # pyenv
92
+ .python-version
93
+
94
+ # pipenv
95
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
96
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
97
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
98
+ # install all needed dependencies.
99
+ #Pipfile.lock
100
+
101
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
102
+ __pypackages__/
103
+
104
+ # Celery stuff
105
+ celerybeat-schedule
106
+ celerybeat.pid
107
+
108
+ # SageMath parsed files
109
+ *.sage.py
110
+
111
+ # Environments
112
+ .env
113
+ .venv
114
+ env/
115
+ venv/
116
+ ENV/
117
+ env.bak/
118
+ venv.bak/
119
+
120
+ # Spyder project settings
121
+ .spyderproject
122
+ .spyproject
123
+
124
+ # Rope project settings
125
+ .ropeproject
126
+
127
+ # mkdocs documentation
128
+ /site
129
+
130
+ # mypy
131
+ .mypy_cache/
132
+ .dmypy.json
133
+ dmypy.json
134
+
135
+ # Pyre type checker
136
+ .pyre/
137
+
138
+ # pytype static type analyzer
139
+ .pytype/
140
+
141
+ # End of https://www.toptal.com/developers/gitignore/api/python
142
+
143
+ dataset
144
+ dataset_raw
145
+ raw
146
+ results
147
+ inference/chunks_temp.json
148
+ logs
149
+ hubert/checkpoint_best_legacy_500.pt
150
+ configs/config.json
151
+ filelists/test.txt
152
+ filelists/train.txt
153
+ filelists/val.txt
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jingyi Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+
4
+ #os.system("wget -P hubert/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
5
+ os.system("wget -P hubert/ https://huggingface.co/spaces/Wanlau/sovits-4.0_datealive/resolve/main/hubert/checkpoint_best_legacy_500.pt")
6
+ import gradio as gr
7
+ import librosa
8
+ import numpy as np
9
+ import soundfile
10
+ from inference.infer_tool import Svc
11
+ import logging
12
+
13
+ logging.getLogger('numba').setLevel(logging.WARNING)
14
+ logging.getLogger('markdown_it').setLevel(logging.WARNING)
15
+ logging.getLogger('urllib3').setLevel(logging.WARNING)
16
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
17
+
18
+ model = Svc("logs/44k/G_76800.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
19
+
20
+
21
+
22
+ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
23
+ if input_audio is None:
24
+ return "You need to upload an audio", None
25
+ sampling_rate, audio = input_audio
26
+ # print(audio.shape,sampling_rate)
27
+ duration = audio.shape[0] / sampling_rate
28
+ if duration > 45:
29
+ return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
30
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
31
+ if len(audio.shape) > 1:
32
+ audio = librosa.to_mono(audio.transpose(1, 0))
33
+ if sampling_rate != 16000:
34
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
35
+ print(audio.shape)
36
+ out_wav_path = "temp.wav"
37
+ soundfile.write(out_wav_path, audio, 16000, format="wav")
38
+ print( cluster_ratio, auto_f0, noise_scale)
39
+ out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
40
+ cluster_infer_ratio=cluster_ratio,
41
+ auto_predict_f0=auto_f0,
42
+ noice_scale=noise_scale
43
+ )
44
+ return "Success", (44100, out_audio.cpu().numpy())
45
+
46
+
47
+ app = gr.Blocks()
48
+ with app:
49
+ with gr.Tabs():
50
+ with gr.TabItem("Basic"):
51
+ gr.Markdown(value="""
52
+ 花吻在上角色语音合成 so-vits-svc-4.0 在线试用
53
+ 使用花吻游戏中的语音数据训练而成。
54
+ 目前可用角色为玲绪、麻衣。
55
+ """)
56
+ spks = list(model.spk2id.keys())
57
+ sid = gr.Dropdown(label="音色", choices=spks, value=spks[0])
58
+ vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
59
+ vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12),使用变调请务必同时将伴奏变调相同半音数!", value=0)
60
+ cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
61
+ auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
62
+ noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
63
+ vc_submit = gr.Button("转换", variant="primary")
64
+ vc_output1 = gr.Textbox(label="Output Message")
65
+ vc_output2 = gr.Audio(label="Output Audio")
66
+ vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output1, vc_output2])
67
+
68
+ gr.HTML("""
69
+ <div style="text-align:center">
70
+ 仅供学习交流试用,不可用于商业或非法用途。
71
+ <br/>
72
+ 由此项目产出的任何结果公开发表需指明输入源,注明原作者及<a href="https://github.com/svc-develop-team/so-vits-svc" target="_blank">代码来源</a>。
73
+ </div>
74
+ """)
75
+
76
+ app.launch()
cluster/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from sklearn.cluster import KMeans
4
+
5
+ def get_cluster_model(ckpt_path):
6
+ checkpoint = torch.load(ckpt_path)
7
+ kmeans_dict = {}
8
+ for spk, ckpt in checkpoint.items():
9
+ km = KMeans(ckpt["n_features_in_"])
10
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
11
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
12
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
13
+ kmeans_dict[spk] = km
14
+ return kmeans_dict
15
+
16
+ def get_cluster_result(model, x, speaker):
17
+ """
18
+ x: np.array [t, 256]
19
+ return cluster class result
20
+ """
21
+ return model[speaker].predict(x)
22
+
23
+ def get_cluster_center_result(model, x,speaker):
24
+ """x: np.array [t, 256]"""
25
+ predict = model[speaker].predict(x)
26
+ return model[speaker].cluster_centers_[predict]
27
+
28
+ def get_center(model, x,speaker):
29
+ return model[speaker].cluster_centers_[x]
cluster/train_cluster.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from glob import glob
3
+ from pathlib import Path
4
+ import torch
5
+ import logging
6
+ import argparse
7
+ import torch
8
+ import numpy as np
9
+ from sklearn.cluster import KMeans, MiniBatchKMeans
10
+ import tqdm
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+ import time
14
+ import random
15
+
16
+ def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
17
+
18
+ logger.info(f"Loading features from {in_dir}")
19
+ features = []
20
+ nums = 0
21
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
22
+ features.append(torch.load(path).squeeze(0).numpy().T)
23
+ # print(features[-1].shape)
24
+ features = np.concatenate(features, axis=0)
25
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
26
+ features = features.astype(np.float32)
27
+ logger.info(f"Clustering features of shape: {features.shape}")
28
+ t = time.time()
29
+ if use_minibatch:
30
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
31
+ else:
32
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
33
+ print(time.time()-t, "s")
34
+
35
+ x = {
36
+ "n_features_in_": kmeans.n_features_in_,
37
+ "_n_threads": kmeans._n_threads,
38
+ "cluster_centers_": kmeans.cluster_centers_,
39
+ }
40
+ print("end")
41
+
42
+ return x
43
+
44
+
45
+ if __name__ == "__main__":
46
+
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
49
+ help='path of training data directory')
50
+ parser.add_argument('--output', type=Path, default="logs/44k",
51
+ help='path of model output directory')
52
+
53
+ args = parser.parse_args()
54
+
55
+ checkpoint_dir = args.output
56
+ dataset = args.dataset
57
+ n_clusters = 10000
58
+
59
+ ckpt = {}
60
+ for spk in os.listdir(dataset):
61
+ if os.path.isdir(dataset/spk):
62
+ print(f"train kmeans for {spk}...")
63
+ in_dir = dataset/spk
64
+ x = train_cluster(in_dir, n_clusters, verbose=False)
65
+ ckpt[spk] = x
66
+
67
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
68
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
69
+ torch.save(
70
+ ckpt,
71
+ checkpoint_path,
72
+ )
73
+
74
+
75
+ # import cluster
76
+ # for spk in tqdm.tqdm(os.listdir("dataset")):
77
+ # if os.path.isdir(f"dataset/{spk}"):
78
+ # print(f"start kmeans inference for {spk}...")
79
+ # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
80
+ # mel_path = feature_path.replace(".discrete.npy",".mel.npy")
81
+ # mel_spectrogram = np.load(mel_path)
82
+ # feature_len = mel_spectrogram.shape[-1]
83
+ # c = np.load(feature_path)
84
+ # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
85
+ # feature = c.T
86
+ # feature_class = cluster.get_cluster_result(feature, spk)
87
+ # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
88
+
89
+
data_utils.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import os
3
+ import random
4
+ import numpy as np
5
+ import torch
6
+ import torch.utils.data
7
+
8
+ import modules.commons as commons
9
+ import utils
10
+ from modules.mel_processing import spectrogram_torch, spec_to_mel_torch
11
+ from utils import load_wav_to_torch, load_filepaths_and_text
12
+
13
+ # import h5py
14
+
15
+
16
+ """Multi speaker version"""
17
+
18
+
19
+ class TextAudioSpeakerLoader(torch.utils.data.Dataset):
20
+ """
21
+ 1) loads audio, speaker_id, text pairs
22
+ 2) normalizes text and converts them to sequences of integers
23
+ 3) computes spectrograms from audio files.
24
+ """
25
+
26
+ def __init__(self, audiopaths, hparams):
27
+ self.audiopaths = load_filepaths_and_text(audiopaths)
28
+ self.max_wav_value = hparams.data.max_wav_value
29
+ self.sampling_rate = hparams.data.sampling_rate
30
+ self.filter_length = hparams.data.filter_length
31
+ self.hop_length = hparams.data.hop_length
32
+ self.win_length = hparams.data.win_length
33
+ self.sampling_rate = hparams.data.sampling_rate
34
+ self.use_sr = hparams.train.use_sr
35
+ self.spec_len = hparams.train.max_speclen
36
+ self.spk_map = hparams.spk
37
+
38
+ random.seed(1234)
39
+ random.shuffle(self.audiopaths)
40
+
41
+ def get_audio(self, filename):
42
+ filename = filename.replace("\\", "/")
43
+ audio, sampling_rate = load_wav_to_torch(filename)
44
+ if sampling_rate != self.sampling_rate:
45
+ raise ValueError("{} SR doesn't match target {} SR".format(
46
+ sampling_rate, self.sampling_rate))
47
+ audio_norm = audio / self.max_wav_value
48
+ audio_norm = audio_norm.unsqueeze(0)
49
+ spec_filename = filename.replace(".wav", ".spec.pt")
50
+ if os.path.exists(spec_filename):
51
+ spec = torch.load(spec_filename)
52
+ else:
53
+ spec = spectrogram_torch(audio_norm, self.filter_length,
54
+ self.sampling_rate, self.hop_length, self.win_length,
55
+ center=False)
56
+ spec = torch.squeeze(spec, 0)
57
+ torch.save(spec, spec_filename)
58
+
59
+ spk = filename.split("/")[-2]
60
+ spk = torch.LongTensor([self.spk_map[spk]])
61
+
62
+ f0 = np.load(filename + ".f0.npy")
63
+ f0, uv = utils.interpolate_f0(f0)
64
+ f0 = torch.FloatTensor(f0)
65
+ uv = torch.FloatTensor(uv)
66
+
67
+ c = torch.load(filename+ ".soft.pt")
68
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[0])
69
+
70
+
71
+ lmin = min(c.size(-1), spec.size(-1))
72
+ assert abs(c.size(-1) - spec.size(-1)) < 3, (c.size(-1), spec.size(-1), f0.shape, filename)
73
+ assert abs(audio_norm.shape[1]-lmin * self.hop_length) < 3 * self.hop_length
74
+ spec, c, f0, uv = spec[:, :lmin], c[:, :lmin], f0[:lmin], uv[:lmin]
75
+ audio_norm = audio_norm[:, :lmin * self.hop_length]
76
+ # if spec.shape[1] < 30:
77
+ # print("skip too short audio:", filename)
78
+ # return None
79
+ if spec.shape[1] > 800:
80
+ start = random.randint(0, spec.shape[1]-800)
81
+ end = start + 790
82
+ spec, c, f0, uv = spec[:, start:end], c[:, start:end], f0[start:end], uv[start:end]
83
+ audio_norm = audio_norm[:, start * self.hop_length : end * self.hop_length]
84
+
85
+ return c, f0, spec, audio_norm, spk, uv
86
+
87
+ def __getitem__(self, index):
88
+ return self.get_audio(self.audiopaths[index][0])
89
+
90
+ def __len__(self):
91
+ return len(self.audiopaths)
92
+
93
+
94
+ class TextAudioCollate:
95
+
96
+ def __call__(self, batch):
97
+ batch = [b for b in batch if b is not None]
98
+
99
+ input_lengths, ids_sorted_decreasing = torch.sort(
100
+ torch.LongTensor([x[0].shape[1] for x in batch]),
101
+ dim=0, descending=True)
102
+
103
+ max_c_len = max([x[0].size(1) for x in batch])
104
+ max_wav_len = max([x[3].size(1) for x in batch])
105
+
106
+ lengths = torch.LongTensor(len(batch))
107
+
108
+ c_padded = torch.FloatTensor(len(batch), batch[0][0].shape[0], max_c_len)
109
+ f0_padded = torch.FloatTensor(len(batch), max_c_len)
110
+ spec_padded = torch.FloatTensor(len(batch), batch[0][2].shape[0], max_c_len)
111
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
112
+ spkids = torch.LongTensor(len(batch), 1)
113
+ uv_padded = torch.FloatTensor(len(batch), max_c_len)
114
+
115
+ c_padded.zero_()
116
+ spec_padded.zero_()
117
+ f0_padded.zero_()
118
+ wav_padded.zero_()
119
+ uv_padded.zero_()
120
+
121
+ for i in range(len(ids_sorted_decreasing)):
122
+ row = batch[ids_sorted_decreasing[i]]
123
+
124
+ c = row[0]
125
+ c_padded[i, :, :c.size(1)] = c
126
+ lengths[i] = c.size(1)
127
+
128
+ f0 = row[1]
129
+ f0_padded[i, :f0.size(0)] = f0
130
+
131
+ spec = row[2]
132
+ spec_padded[i, :, :spec.size(1)] = spec
133
+
134
+ wav = row[3]
135
+ wav_padded[i, :, :wav.size(1)] = wav
136
+
137
+ spkids[i, 0] = row[4]
138
+
139
+ uv = row[5]
140
+ uv_padded[i, :uv.size(0)] = uv
141
+
142
+ return c_padded, f0_padded, spec_padded, wav_padded, spkids, lengths, uv_padded
flask_api.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+
4
+ import soundfile
5
+ import torch
6
+ import torchaudio
7
+ from flask import Flask, request, send_file
8
+ from flask_cors import CORS
9
+
10
+ from inference.infer_tool import Svc, RealTimeVC
11
+
12
+ app = Flask(__name__)
13
+
14
+ CORS(app)
15
+
16
+ logging.getLogger('numba').setLevel(logging.WARNING)
17
+
18
+
19
+ @app.route("/voiceChangeModel", methods=["POST"])
20
+ def voice_change_model():
21
+ request_form = request.form
22
+ wave_file = request.files.get("sample", None)
23
+ # 变调信息
24
+ f_pitch_change = float(request_form.get("fPitchChange", 0))
25
+ # DAW所需的采样率
26
+ daw_sample = int(float(request_form.get("sampleRate", 0)))
27
+ speaker_id = int(float(request_form.get("sSpeakId", 0)))
28
+ # http获得wav文件并转换
29
+ input_wav_path = io.BytesIO(wave_file.read())
30
+
31
+ # 模型推理
32
+ if raw_infer:
33
+ out_audio, out_sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
34
+ tar_audio = torchaudio.functional.resample(out_audio, svc_model.target_sample, daw_sample)
35
+ else:
36
+ out_audio = svc.process(svc_model, speaker_id, f_pitch_change, input_wav_path)
37
+ tar_audio = torchaudio.functional.resample(torch.from_numpy(out_audio), svc_model.target_sample, daw_sample)
38
+ # 返回音频
39
+ out_wav_path = io.BytesIO()
40
+ soundfile.write(out_wav_path, tar_audio.cpu().numpy(), daw_sample, format="wav")
41
+ out_wav_path.seek(0)
42
+ return send_file(out_wav_path, download_name="temp.wav", as_attachment=True)
43
+
44
+
45
+ if __name__ == '__main__':
46
+ # 启用则为直接切片合成,False为交叉淡化方式
47
+ # vst插件调整0.3-0.5s切片时间可以降低延迟,直接切片方法会有连接处爆音、交叉淡化会有轻微重叠声音
48
+ # 自行选择能接受的方法,或将vst最大切片时间调整为1s,此处设为Ture,延迟大音质稳定一些
49
+ raw_infer = True
50
+ # 每个模型和config是唯一对应的
51
+ model_name = "logs/32k/G_174000-Copy1.pth"
52
+ config_name = "configs/config.json"
53
+ svc_model = Svc(model_name, config_name)
54
+ svc = RealTimeVC()
55
+ # 此处与vst插件对应,不建议更改
56
+ app.run(port=6842, host="0.0.0.0", debug=False, threaded=False)
hubert/__init__.py ADDED
File without changes
hubert/hubert_model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str,
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ hubert = HubertSoft()
218
+ checkpoint = torch.load(path)
219
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
220
+ hubert.load_state_dict(checkpoint)
221
+ hubert.eval()
222
+ return hubert
hubert/hubert_model_onnx.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+
58
+ class HubertSoft(Hubert):
59
+ def __init__(self):
60
+ super().__init__()
61
+
62
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
63
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
64
+ x, _ = self.encode(wav)
65
+ return self.proj(x)
66
+
67
+ def forward(self, x):
68
+ return self.units(x)
69
+
70
+ class FeatureExtractor(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
74
+ self.norm0 = nn.GroupNorm(512, 512)
75
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
76
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
77
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
78
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
79
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
80
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ x = t_func.gelu(self.norm0(self.conv0(x)))
84
+ x = t_func.gelu(self.conv1(x))
85
+ x = t_func.gelu(self.conv2(x))
86
+ x = t_func.gelu(self.conv3(x))
87
+ x = t_func.gelu(self.conv4(x))
88
+ x = t_func.gelu(self.conv5(x))
89
+ x = t_func.gelu(self.conv6(x))
90
+ return x
91
+
92
+
93
+ class FeatureProjection(nn.Module):
94
+ def __init__(self):
95
+ super().__init__()
96
+ self.norm = nn.LayerNorm(512)
97
+ self.projection = nn.Linear(512, 768)
98
+ self.dropout = nn.Dropout(0.1)
99
+
100
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
101
+ x = self.norm(x)
102
+ x = self.projection(x)
103
+ x = self.dropout(x)
104
+ return x
105
+
106
+
107
+ class PositionalConvEmbedding(nn.Module):
108
+ def __init__(self):
109
+ super().__init__()
110
+ self.conv = nn.Conv1d(
111
+ 768,
112
+ 768,
113
+ kernel_size=128,
114
+ padding=128 // 2,
115
+ groups=16,
116
+ )
117
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.conv(x.transpose(1, 2))
121
+ x = t_func.gelu(x[:, :, :-1])
122
+ return x.transpose(1, 2)
123
+
124
+
125
+ class TransformerEncoder(nn.Module):
126
+ def __init__(
127
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
128
+ ) -> None:
129
+ super(TransformerEncoder, self).__init__()
130
+ self.layers = nn.ModuleList(
131
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
132
+ )
133
+ self.num_layers = num_layers
134
+
135
+ def forward(
136
+ self,
137
+ src: torch.Tensor,
138
+ mask: torch.Tensor = None,
139
+ src_key_padding_mask: torch.Tensor = None,
140
+ output_layer: Optional[int] = None,
141
+ ) -> torch.Tensor:
142
+ output = src
143
+ for layer in self.layers[:output_layer]:
144
+ output = layer(
145
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
146
+ )
147
+ return output
148
+
149
+
150
+ def _compute_mask(
151
+ shape: Tuple[int, int],
152
+ mask_prob: float,
153
+ mask_length: int,
154
+ device: torch.device,
155
+ min_masks: int = 0,
156
+ ) -> torch.Tensor:
157
+ batch_size, sequence_length = shape
158
+
159
+ if mask_length < 1:
160
+ raise ValueError("`mask_length` has to be bigger than 0.")
161
+
162
+ if mask_length > sequence_length:
163
+ raise ValueError(
164
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
165
+ )
166
+
167
+ # compute number of masked spans in batch
168
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
169
+ num_masked_spans = max(num_masked_spans, min_masks)
170
+
171
+ # make sure num masked indices <= sequence_length
172
+ if num_masked_spans * mask_length > sequence_length:
173
+ num_masked_spans = sequence_length // mask_length
174
+
175
+ # SpecAugment mask to fill
176
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
177
+
178
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
179
+ uniform_dist = torch.ones(
180
+ (batch_size, sequence_length - (mask_length - 1)), device=device
181
+ )
182
+
183
+ # get random indices to mask
184
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
185
+
186
+ # expand masked indices to masked spans
187
+ mask_indices = (
188
+ mask_indices.unsqueeze(dim=-1)
189
+ .expand((batch_size, num_masked_spans, mask_length))
190
+ .reshape(batch_size, num_masked_spans * mask_length)
191
+ )
192
+ offsets = (
193
+ torch.arange(mask_length, device=device)[None, None, :]
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ mask_idxs = mask_indices + offsets
198
+
199
+ # scatter indices to mask
200
+ mask = mask.scatter(1, mask_idxs, True)
201
+
202
+ return mask
203
+
204
+
205
+ def hubert_soft(
206
+ path: str,
207
+ ) -> HubertSoft:
208
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
209
+ Args:
210
+ path (str): path of a pretrained model
211
+ """
212
+ hubert = HubertSoft()
213
+ checkpoint = torch.load(path)
214
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
215
+ hubert.load_state_dict(checkpoint)
216
+ hubert.eval()
217
+ return hubert
hubert/put_hubert_ckpt_here ADDED
File without changes
inference/__init__.py ADDED
File without changes
inference/infer_tool.py ADDED
@@ -0,0 +1,244 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import json
4
+ import logging
5
+ import os
6
+ import time
7
+ from pathlib import Path
8
+ from inference import slicer
9
+
10
+ import librosa
11
+ import numpy as np
12
+ # import onnxruntime
13
+ import parselmouth
14
+ import soundfile
15
+ import torch
16
+ import torchaudio
17
+
18
+ import cluster
19
+ from hubert import hubert_model
20
+ import utils
21
+ from models import SynthesizerTrn
22
+
23
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
24
+
25
+
26
+ def read_temp(file_name):
27
+ if not os.path.exists(file_name):
28
+ with open(file_name, "w") as f:
29
+ f.write(json.dumps({"info": "temp_dict"}))
30
+ return {}
31
+ else:
32
+ try:
33
+ with open(file_name, "r") as f:
34
+ data = f.read()
35
+ data_dict = json.loads(data)
36
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
37
+ f_name = file_name.replace("\\", "/").split("/")[-1]
38
+ print(f"clean {f_name}")
39
+ for wav_hash in list(data_dict.keys()):
40
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
41
+ del data_dict[wav_hash]
42
+ except Exception as e:
43
+ print(e)
44
+ print(f"{file_name} error,auto rebuild file")
45
+ data_dict = {"info": "temp_dict"}
46
+ return data_dict
47
+
48
+
49
+ def write_temp(file_name, data):
50
+ with open(file_name, "w") as f:
51
+ f.write(json.dumps(data))
52
+
53
+
54
+ def timeit(func):
55
+ def run(*args, **kwargs):
56
+ t = time.time()
57
+ res = func(*args, **kwargs)
58
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
59
+ return res
60
+
61
+ return run
62
+
63
+
64
+ def format_wav(audio_path):
65
+ if Path(audio_path).suffix == '.wav':
66
+ return
67
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
68
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
69
+
70
+
71
+ def get_end_file(dir_path, end):
72
+ file_lists = []
73
+ for root, dirs, files in os.walk(dir_path):
74
+ files = [f for f in files if f[0] != '.']
75
+ dirs[:] = [d for d in dirs if d[0] != '.']
76
+ for f_file in files:
77
+ if f_file.endswith(end):
78
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
79
+ return file_lists
80
+
81
+
82
+ def get_md5(content):
83
+ return hashlib.new("md5", content).hexdigest()
84
+
85
+ def fill_a_to_b(a, b):
86
+ if len(a) < len(b):
87
+ for _ in range(0, len(b) - len(a)):
88
+ a.append(a[0])
89
+
90
+ def mkdir(paths: list):
91
+ for path in paths:
92
+ if not os.path.exists(path):
93
+ os.mkdir(path)
94
+
95
+ def pad_array(arr, target_length):
96
+ current_length = arr.shape[0]
97
+ if current_length >= target_length:
98
+ return arr
99
+ else:
100
+ pad_width = target_length - current_length
101
+ pad_left = pad_width // 2
102
+ pad_right = pad_width - pad_left
103
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
104
+ return padded_arr
105
+
106
+
107
+ class Svc(object):
108
+ def __init__(self, net_g_path, config_path,
109
+ device=None,
110
+ cluster_model_path="logs/44k/kmeans_10000.pt"):
111
+ self.net_g_path = net_g_path
112
+ if device is None:
113
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
114
+ else:
115
+ self.dev = torch.device(device)
116
+ self.net_g_ms = None
117
+ self.hps_ms = utils.get_hparams_from_file(config_path)
118
+ self.target_sample = self.hps_ms.data.sampling_rate
119
+ self.hop_size = self.hps_ms.data.hop_length
120
+ self.spk2id = self.hps_ms.spk
121
+ # 加载hubert
122
+ self.hubert_model = utils.get_hubert_model().to(self.dev)
123
+ self.load_model()
124
+ if os.path.exists(cluster_model_path):
125
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
126
+
127
+ def load_model(self):
128
+ # 获取模型配置
129
+ self.net_g_ms = SynthesizerTrn(
130
+ self.hps_ms.data.filter_length // 2 + 1,
131
+ self.hps_ms.train.segment_size // self.hps_ms.data.hop_length,
132
+ **self.hps_ms.model)
133
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
134
+ if "half" in self.net_g_path and torch.cuda.is_available():
135
+ _ = self.net_g_ms.half().eval().to(self.dev)
136
+ else:
137
+ _ = self.net_g_ms.eval().to(self.dev)
138
+
139
+
140
+
141
+ def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
142
+
143
+ wav, sr = librosa.load(in_path, sr=self.target_sample)
144
+
145
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
146
+ f0, uv = utils.interpolate_f0(f0)
147
+ f0 = torch.FloatTensor(f0)
148
+ uv = torch.FloatTensor(uv)
149
+ f0 = f0 * 2 ** (tran / 12)
150
+ f0 = f0.unsqueeze(0).to(self.dev)
151
+ uv = uv.unsqueeze(0).to(self.dev)
152
+
153
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
154
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
155
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
156
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
157
+
158
+ if cluster_infer_ratio !=0:
159
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
160
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
161
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
162
+
163
+ c = c.unsqueeze(0)
164
+ return c, f0, uv
165
+
166
+ def infer(self, speaker, tran, raw_path,
167
+ cluster_infer_ratio=0,
168
+ auto_predict_f0=False,
169
+ noice_scale=0.4):
170
+ speaker_id = self.spk2id[speaker]
171
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
172
+ c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
173
+ if "half" in self.net_g_path and torch.cuda.is_available():
174
+ c = c.half()
175
+ with torch.no_grad():
176
+ start = time.time()
177
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0,0].data.float()
178
+ use_time = time.time() - start
179
+ print("vits use time:{}".format(use_time))
180
+ return audio, audio.shape[-1]
181
+
182
+ def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5):
183
+ wav_path = raw_audio_path
184
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
185
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
186
+
187
+ audio = []
188
+ for (slice_tag, data) in audio_data:
189
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
190
+ # padd
191
+ pad_len = int(audio_sr * pad_seconds)
192
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
193
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
194
+ raw_path = io.BytesIO()
195
+ soundfile.write(raw_path, data, audio_sr, format="wav")
196
+ raw_path.seek(0)
197
+ if slice_tag:
198
+ print('jump empty segment')
199
+ _audio = np.zeros(length)
200
+ else:
201
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
202
+ cluster_infer_ratio=cluster_infer_ratio,
203
+ auto_predict_f0=auto_predict_f0,
204
+ noice_scale=noice_scale
205
+ )
206
+ _audio = out_audio.cpu().numpy()
207
+
208
+ pad_len = int(self.target_sample * pad_seconds)
209
+ _audio = _audio[pad_len:-pad_len]
210
+ audio.extend(list(_audio))
211
+ return np.array(audio)
212
+
213
+
214
+ class RealTimeVC:
215
+ def __init__(self):
216
+ self.last_chunk = None
217
+ self.last_o = None
218
+ self.chunk_len = 16000 # 区块长度
219
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
220
+
221
+ """输入输出都是1维numpy 音频波形数组"""
222
+
223
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
224
+ import maad
225
+ audio, sr = torchaudio.load(input_wav_path)
226
+ audio = audio.cpu().numpy()[0]
227
+ temp_wav = io.BytesIO()
228
+ if self.last_chunk is None:
229
+ input_wav_path.seek(0)
230
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
231
+ audio = audio.cpu().numpy()
232
+ self.last_chunk = audio[-self.pre_len:]
233
+ self.last_o = audio
234
+ return audio[-self.chunk_len:]
235
+ else:
236
+ audio = np.concatenate([self.last_chunk, audio])
237
+ soundfile.write(temp_wav, audio, sr, format="wav")
238
+ temp_wav.seek(0)
239
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
240
+ audio = audio.cpu().numpy()
241
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
242
+ self.last_chunk = audio[-self.pre_len:]
243
+ self.last_o = audio
244
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = utils.get_hubert_model()
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr
inference_main.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import time
4
+ from pathlib import Path
5
+
6
+ import librosa
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import soundfile
10
+
11
+ from inference import infer_tool
12
+ from inference import slicer
13
+ from inference.infer_tool import Svc
14
+
15
+ logging.getLogger('numba').setLevel(logging.WARNING)
16
+ chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
17
+
18
+
19
+
20
+ def main():
21
+ import argparse
22
+
23
+ parser = argparse.ArgumentParser(description='sovits4 inference')
24
+
25
+ # 一定要设置的部分
26
+ parser.add_argument('-m', '--model_path', type=str, default="logs/44k/G_0.pth", help='模型路径')
27
+ parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
28
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
29
+ parser.add_argument('-t', '--trans', type=int, nargs='+', default=[0], help='音高调整,支持正负(半音)')
30
+ parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['nen'], help='合成目标说话人名称')
31
+
32
+ # 可选项部分
33
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
34
+ help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
35
+ parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
36
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
37
+
38
+ # 不用动的部分
39
+ parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
40
+ parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
41
+ parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
42
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
43
+ parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
44
+
45
+ args = parser.parse_args()
46
+
47
+ svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
48
+ infer_tool.mkdir(["raw", "results"])
49
+ clean_names = args.clean_names
50
+ trans = args.trans
51
+ spk_list = args.spk_list
52
+ slice_db = args.slice_db
53
+ wav_format = args.wav_format
54
+ auto_predict_f0 = args.auto_predict_f0
55
+ cluster_infer_ratio = args.cluster_infer_ratio
56
+ noice_scale = args.noice_scale
57
+ pad_seconds = args.pad_seconds
58
+
59
+ infer_tool.fill_a_to_b(trans, clean_names)
60
+ for clean_name, tran in zip(clean_names, trans):
61
+ raw_audio_path = f"raw/{clean_name}"
62
+ if "." not in raw_audio_path:
63
+ raw_audio_path += ".wav"
64
+ infer_tool.format_wav(raw_audio_path)
65
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
66
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
67
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
68
+
69
+ for spk in spk_list:
70
+ audio = []
71
+ for (slice_tag, data) in audio_data:
72
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
73
+
74
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
75
+ if slice_tag:
76
+ print('jump empty segment')
77
+ _audio = np.zeros(length)
78
+ else:
79
+ # padd
80
+ pad_len = int(audio_sr * pad_seconds)
81
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
82
+ raw_path = io.BytesIO()
83
+ soundfile.write(raw_path, data, audio_sr, format="wav")
84
+ raw_path.seek(0)
85
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
86
+ cluster_infer_ratio=cluster_infer_ratio,
87
+ auto_predict_f0=auto_predict_f0,
88
+ noice_scale=noice_scale
89
+ )
90
+ _audio = out_audio.cpu().numpy()
91
+ pad_len = int(svc_model.target_sample * pad_seconds)
92
+ _audio = _audio[pad_len:-pad_len]
93
+
94
+ audio.extend(list(infer_tool.pad_array(_audio, length)))
95
+ key = "auto" if auto_predict_f0 else f"{tran}key"
96
+ cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
97
+ res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
98
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
99
+
100
+ if __name__ == '__main__':
101
+ main()
logs/44k/put_pretrained_model_here ADDED
File without changes
models.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ import modules.attentions as attentions
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
13
+
14
+ import utils
15
+ from modules.commons import init_weights, get_padding
16
+ from vdecoder.hifigan.models import Generator
17
+ from utils import f0_to_coarse
18
+
19
+ class ResidualCouplingBlock(nn.Module):
20
+ def __init__(self,
21
+ channels,
22
+ hidden_channels,
23
+ kernel_size,
24
+ dilation_rate,
25
+ n_layers,
26
+ n_flows=4,
27
+ gin_channels=0):
28
+ super().__init__()
29
+ self.channels = channels
30
+ self.hidden_channels = hidden_channels
31
+ self.kernel_size = kernel_size
32
+ self.dilation_rate = dilation_rate
33
+ self.n_layers = n_layers
34
+ self.n_flows = n_flows
35
+ self.gin_channels = gin_channels
36
+
37
+ self.flows = nn.ModuleList()
38
+ for i in range(n_flows):
39
+ self.flows.append(modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
40
+ self.flows.append(modules.Flip())
41
+
42
+ def forward(self, x, x_mask, g=None, reverse=False):
43
+ if not reverse:
44
+ for flow in self.flows:
45
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
46
+ else:
47
+ for flow in reversed(self.flows):
48
+ x = flow(x, x_mask, g=g, reverse=reverse)
49
+ return x
50
+
51
+
52
+ class Encoder(nn.Module):
53
+ def __init__(self,
54
+ in_channels,
55
+ out_channels,
56
+ hidden_channels,
57
+ kernel_size,
58
+ dilation_rate,
59
+ n_layers,
60
+ gin_channels=0):
61
+ super().__init__()
62
+ self.in_channels = in_channels
63
+ self.out_channels = out_channels
64
+ self.hidden_channels = hidden_channels
65
+ self.kernel_size = kernel_size
66
+ self.dilation_rate = dilation_rate
67
+ self.n_layers = n_layers
68
+ self.gin_channels = gin_channels
69
+
70
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
71
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
72
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
73
+
74
+ def forward(self, x, x_lengths, g=None):
75
+ # print(x.shape,x_lengths.shape)
76
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
77
+ x = self.pre(x) * x_mask
78
+ x = self.enc(x, x_mask, g=g)
79
+ stats = self.proj(x) * x_mask
80
+ m, logs = torch.split(stats, self.out_channels, dim=1)
81
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
82
+ return z, m, logs, x_mask
83
+
84
+
85
+ class TextEncoder(nn.Module):
86
+ def __init__(self,
87
+ out_channels,
88
+ hidden_channels,
89
+ kernel_size,
90
+ n_layers,
91
+ gin_channels=0,
92
+ filter_channels=None,
93
+ n_heads=None,
94
+ p_dropout=None):
95
+ super().__init__()
96
+ self.out_channels = out_channels
97
+ self.hidden_channels = hidden_channels
98
+ self.kernel_size = kernel_size
99
+ self.n_layers = n_layers
100
+ self.gin_channels = gin_channels
101
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
102
+ self.f0_emb = nn.Embedding(256, hidden_channels)
103
+
104
+ self.enc_ = attentions.Encoder(
105
+ hidden_channels,
106
+ filter_channels,
107
+ n_heads,
108
+ n_layers,
109
+ kernel_size,
110
+ p_dropout)
111
+
112
+ def forward(self, x, x_mask, f0=None, noice_scale=1):
113
+ x = x + self.f0_emb(f0).transpose(1,2)
114
+ x = self.enc_(x * x_mask, x_mask)
115
+ stats = self.proj(x) * x_mask
116
+ m, logs = torch.split(stats, self.out_channels, dim=1)
117
+ z = (m + torch.randn_like(m) * torch.exp(logs) * noice_scale) * x_mask
118
+
119
+ return z, m, logs, x_mask
120
+
121
+
122
+
123
+ class DiscriminatorP(torch.nn.Module):
124
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
125
+ super(DiscriminatorP, self).__init__()
126
+ self.period = period
127
+ self.use_spectral_norm = use_spectral_norm
128
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
129
+ self.convs = nn.ModuleList([
130
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
132
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
133
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
134
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
135
+ ])
136
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
137
+
138
+ def forward(self, x):
139
+ fmap = []
140
+
141
+ # 1d to 2d
142
+ b, c, t = x.shape
143
+ if t % self.period != 0: # pad first
144
+ n_pad = self.period - (t % self.period)
145
+ x = F.pad(x, (0, n_pad), "reflect")
146
+ t = t + n_pad
147
+ x = x.view(b, c, t // self.period, self.period)
148
+
149
+ for l in self.convs:
150
+ x = l(x)
151
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
152
+ fmap.append(x)
153
+ x = self.conv_post(x)
154
+ fmap.append(x)
155
+ x = torch.flatten(x, 1, -1)
156
+
157
+ return x, fmap
158
+
159
+
160
+ class DiscriminatorS(torch.nn.Module):
161
+ def __init__(self, use_spectral_norm=False):
162
+ super(DiscriminatorS, self).__init__()
163
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
164
+ self.convs = nn.ModuleList([
165
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
166
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
167
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
168
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
169
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
170
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
171
+ ])
172
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
173
+
174
+ def forward(self, x):
175
+ fmap = []
176
+
177
+ for l in self.convs:
178
+ x = l(x)
179
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
180
+ fmap.append(x)
181
+ x = self.conv_post(x)
182
+ fmap.append(x)
183
+ x = torch.flatten(x, 1, -1)
184
+
185
+ return x, fmap
186
+
187
+
188
+ class MultiPeriodDiscriminator(torch.nn.Module):
189
+ def __init__(self, use_spectral_norm=False):
190
+ super(MultiPeriodDiscriminator, self).__init__()
191
+ periods = [2,3,5,7,11]
192
+
193
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
194
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
195
+ self.discriminators = nn.ModuleList(discs)
196
+
197
+ def forward(self, y, y_hat):
198
+ y_d_rs = []
199
+ y_d_gs = []
200
+ fmap_rs = []
201
+ fmap_gs = []
202
+ for i, d in enumerate(self.discriminators):
203
+ y_d_r, fmap_r = d(y)
204
+ y_d_g, fmap_g = d(y_hat)
205
+ y_d_rs.append(y_d_r)
206
+ y_d_gs.append(y_d_g)
207
+ fmap_rs.append(fmap_r)
208
+ fmap_gs.append(fmap_g)
209
+
210
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
211
+
212
+
213
+ class SpeakerEncoder(torch.nn.Module):
214
+ def __init__(self, mel_n_channels=80, model_num_layers=3, model_hidden_size=256, model_embedding_size=256):
215
+ super(SpeakerEncoder, self).__init__()
216
+ self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
217
+ self.linear = nn.Linear(model_hidden_size, model_embedding_size)
218
+ self.relu = nn.ReLU()
219
+
220
+ def forward(self, mels):
221
+ self.lstm.flatten_parameters()
222
+ _, (hidden, _) = self.lstm(mels)
223
+ embeds_raw = self.relu(self.linear(hidden[-1]))
224
+ return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
225
+
226
+ def compute_partial_slices(self, total_frames, partial_frames, partial_hop):
227
+ mel_slices = []
228
+ for i in range(0, total_frames-partial_frames, partial_hop):
229
+ mel_range = torch.arange(i, i+partial_frames)
230
+ mel_slices.append(mel_range)
231
+
232
+ return mel_slices
233
+
234
+ def embed_utterance(self, mel, partial_frames=128, partial_hop=64):
235
+ mel_len = mel.size(1)
236
+ last_mel = mel[:,-partial_frames:]
237
+
238
+ if mel_len > partial_frames:
239
+ mel_slices = self.compute_partial_slices(mel_len, partial_frames, partial_hop)
240
+ mels = list(mel[:,s] for s in mel_slices)
241
+ mels.append(last_mel)
242
+ mels = torch.stack(tuple(mels), 0).squeeze(1)
243
+
244
+ with torch.no_grad():
245
+ partial_embeds = self(mels)
246
+ embed = torch.mean(partial_embeds, axis=0).unsqueeze(0)
247
+ #embed = embed / torch.linalg.norm(embed, 2)
248
+ else:
249
+ with torch.no_grad():
250
+ embed = self(last_mel)
251
+
252
+ return embed
253
+
254
+ class F0Decoder(nn.Module):
255
+ def __init__(self,
256
+ out_channels,
257
+ hidden_channels,
258
+ filter_channels,
259
+ n_heads,
260
+ n_layers,
261
+ kernel_size,
262
+ p_dropout,
263
+ spk_channels=0):
264
+ super().__init__()
265
+ self.out_channels = out_channels
266
+ self.hidden_channels = hidden_channels
267
+ self.filter_channels = filter_channels
268
+ self.n_heads = n_heads
269
+ self.n_layers = n_layers
270
+ self.kernel_size = kernel_size
271
+ self.p_dropout = p_dropout
272
+ self.spk_channels = spk_channels
273
+
274
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
275
+ self.decoder = attentions.FFT(
276
+ hidden_channels,
277
+ filter_channels,
278
+ n_heads,
279
+ n_layers,
280
+ kernel_size,
281
+ p_dropout)
282
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
283
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
284
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
285
+
286
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
287
+ x = torch.detach(x)
288
+ if (spk_emb is not None):
289
+ x = x + self.cond(spk_emb)
290
+ x += self.f0_prenet(norm_f0)
291
+ x = self.prenet(x) * x_mask
292
+ x = self.decoder(x * x_mask, x_mask)
293
+ x = self.proj(x) * x_mask
294
+ return x
295
+
296
+
297
+ class SynthesizerTrn(nn.Module):
298
+ """
299
+ Synthesizer for Training
300
+ """
301
+
302
+ def __init__(self,
303
+ spec_channels,
304
+ segment_size,
305
+ inter_channels,
306
+ hidden_channels,
307
+ filter_channels,
308
+ n_heads,
309
+ n_layers,
310
+ kernel_size,
311
+ p_dropout,
312
+ resblock,
313
+ resblock_kernel_sizes,
314
+ resblock_dilation_sizes,
315
+ upsample_rates,
316
+ upsample_initial_channel,
317
+ upsample_kernel_sizes,
318
+ gin_channels,
319
+ ssl_dim,
320
+ n_speakers,
321
+ sampling_rate=44100,
322
+ **kwargs):
323
+
324
+ super().__init__()
325
+ self.spec_channels = spec_channels
326
+ self.inter_channels = inter_channels
327
+ self.hidden_channels = hidden_channels
328
+ self.filter_channels = filter_channels
329
+ self.n_heads = n_heads
330
+ self.n_layers = n_layers
331
+ self.kernel_size = kernel_size
332
+ self.p_dropout = p_dropout
333
+ self.resblock = resblock
334
+ self.resblock_kernel_sizes = resblock_kernel_sizes
335
+ self.resblock_dilation_sizes = resblock_dilation_sizes
336
+ self.upsample_rates = upsample_rates
337
+ self.upsample_initial_channel = upsample_initial_channel
338
+ self.upsample_kernel_sizes = upsample_kernel_sizes
339
+ self.segment_size = segment_size
340
+ self.gin_channels = gin_channels
341
+ self.ssl_dim = ssl_dim
342
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
343
+
344
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
345
+
346
+ self.enc_p = TextEncoder(
347
+ inter_channels,
348
+ hidden_channels,
349
+ filter_channels=filter_channels,
350
+ n_heads=n_heads,
351
+ n_layers=n_layers,
352
+ kernel_size=kernel_size,
353
+ p_dropout=p_dropout
354
+ )
355
+ hps = {
356
+ "sampling_rate": sampling_rate,
357
+ "inter_channels": inter_channels,
358
+ "resblock": resblock,
359
+ "resblock_kernel_sizes": resblock_kernel_sizes,
360
+ "resblock_dilation_sizes": resblock_dilation_sizes,
361
+ "upsample_rates": upsample_rates,
362
+ "upsample_initial_channel": upsample_initial_channel,
363
+ "upsample_kernel_sizes": upsample_kernel_sizes,
364
+ "gin_channels": gin_channels,
365
+ }
366
+ self.dec = Generator(h=hps)
367
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
368
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
369
+ self.f0_decoder = F0Decoder(
370
+ 1,
371
+ hidden_channels,
372
+ filter_channels,
373
+ n_heads,
374
+ n_layers,
375
+ kernel_size,
376
+ p_dropout,
377
+ spk_channels=gin_channels
378
+ )
379
+ self.emb_uv = nn.Embedding(2, hidden_channels)
380
+
381
+ def forward(self, c, f0, uv, spec, g=None, c_lengths=None, spec_lengths=None):
382
+ g = self.emb_g(g).transpose(1,2)
383
+ # ssl prenet
384
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
385
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
386
+
387
+ # f0 predict
388
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
389
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv)
390
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
391
+
392
+ # encoder
393
+ z_ptemp, m_p, logs_p, _ = self.enc_p(x, x_mask, f0=f0_to_coarse(f0))
394
+ z, m_q, logs_q, spec_mask = self.enc_q(spec, spec_lengths, g=g)
395
+
396
+ # flow
397
+ z_p = self.flow(z, spec_mask, g=g)
398
+ z_slice, pitch_slice, ids_slice = commons.rand_slice_segments_with_pitch(z, f0, spec_lengths, self.segment_size)
399
+
400
+ # nsf decoder
401
+ o = self.dec(z_slice, g=g, f0=pitch_slice)
402
+
403
+ return o, ids_slice, spec_mask, (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0
404
+
405
+ def infer(self, c, f0, uv, g=None, noice_scale=0.35, predict_f0=False):
406
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
407
+ g = self.emb_g(g).transpose(1,2)
408
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
409
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1,2)
410
+
411
+ if predict_f0:
412
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
413
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
414
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
415
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
416
+
417
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), noice_scale=noice_scale)
418
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
419
+ o = self.dec(z * c_mask, g=g, f0=f0)
420
+ return o
modules/__init__.py ADDED
File without changes
modules/attentions.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+ from modules.modules import LayerNorm
11
+
12
+
13
+ class FFT(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15
+ proximal_bias=False, proximal_init=True, **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.proximal_bias = proximal_bias
24
+ self.proximal_init = proximal_init
25
+
26
+ self.drop = nn.Dropout(p_dropout)
27
+ self.self_attn_layers = nn.ModuleList()
28
+ self.norm_layers_0 = nn.ModuleList()
29
+ self.ffn_layers = nn.ModuleList()
30
+ self.norm_layers_1 = nn.ModuleList()
31
+ for i in range(self.n_layers):
32
+ self.self_attn_layers.append(
33
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
34
+ proximal_init=proximal_init))
35
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
36
+ self.ffn_layers.append(
37
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
39
+
40
+ def forward(self, x, x_mask):
41
+ """
42
+ x: decoder input
43
+ h: encoder output
44
+ """
45
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46
+ x = x * x_mask
47
+ for i in range(self.n_layers):
48
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
49
+ y = self.drop(y)
50
+ x = self.norm_layers_0[i](x + y)
51
+
52
+ y = self.ffn_layers[i](x, x_mask)
53
+ y = self.drop(y)
54
+ x = self.norm_layers_1[i](x + y)
55
+ x = x * x_mask
56
+ return x
57
+
58
+
59
+ class Encoder(nn.Module):
60
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
61
+ super().__init__()
62
+ self.hidden_channels = hidden_channels
63
+ self.filter_channels = filter_channels
64
+ self.n_heads = n_heads
65
+ self.n_layers = n_layers
66
+ self.kernel_size = kernel_size
67
+ self.p_dropout = p_dropout
68
+ self.window_size = window_size
69
+
70
+ self.drop = nn.Dropout(p_dropout)
71
+ self.attn_layers = nn.ModuleList()
72
+ self.norm_layers_1 = nn.ModuleList()
73
+ self.ffn_layers = nn.ModuleList()
74
+ self.norm_layers_2 = nn.ModuleList()
75
+ for i in range(self.n_layers):
76
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
77
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
78
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
79
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
80
+
81
+ def forward(self, x, x_mask):
82
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83
+ x = x * x_mask
84
+ for i in range(self.n_layers):
85
+ y = self.attn_layers[i](x, x, attn_mask)
86
+ y = self.drop(y)
87
+ x = self.norm_layers_1[i](x + y)
88
+
89
+ y = self.ffn_layers[i](x, x_mask)
90
+ y = self.drop(y)
91
+ x = self.norm_layers_2[i](x + y)
92
+ x = x * x_mask
93
+ return x
94
+
95
+
96
+ class Decoder(nn.Module):
97
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
98
+ super().__init__()
99
+ self.hidden_channels = hidden_channels
100
+ self.filter_channels = filter_channels
101
+ self.n_heads = n_heads
102
+ self.n_layers = n_layers
103
+ self.kernel_size = kernel_size
104
+ self.p_dropout = p_dropout
105
+ self.proximal_bias = proximal_bias
106
+ self.proximal_init = proximal_init
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.self_attn_layers = nn.ModuleList()
110
+ self.norm_layers_0 = nn.ModuleList()
111
+ self.encdec_attn_layers = nn.ModuleList()
112
+ self.norm_layers_1 = nn.ModuleList()
113
+ self.ffn_layers = nn.ModuleList()
114
+ self.norm_layers_2 = nn.ModuleList()
115
+ for i in range(self.n_layers):
116
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
119
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
120
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
121
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
122
+
123
+ def forward(self, x, x_mask, h, h_mask):
124
+ """
125
+ x: decoder input
126
+ h: encoder output
127
+ """
128
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
129
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
130
+ x = x * x_mask
131
+ for i in range(self.n_layers):
132
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
133
+ y = self.drop(y)
134
+ x = self.norm_layers_0[i](x + y)
135
+
136
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
137
+ y = self.drop(y)
138
+ x = self.norm_layers_1[i](x + y)
139
+
140
+ y = self.ffn_layers[i](x, x_mask)
141
+ y = self.drop(y)
142
+ x = self.norm_layers_2[i](x + y)
143
+ x = x * x_mask
144
+ return x
145
+
146
+
147
+ class MultiHeadAttention(nn.Module):
148
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
149
+ super().__init__()
150
+ assert channels % n_heads == 0
151
+
152
+ self.channels = channels
153
+ self.out_channels = out_channels
154
+ self.n_heads = n_heads
155
+ self.p_dropout = p_dropout
156
+ self.window_size = window_size
157
+ self.heads_share = heads_share
158
+ self.block_length = block_length
159
+ self.proximal_bias = proximal_bias
160
+ self.proximal_init = proximal_init
161
+ self.attn = None
162
+
163
+ self.k_channels = channels // n_heads
164
+ self.conv_q = nn.Conv1d(channels, channels, 1)
165
+ self.conv_k = nn.Conv1d(channels, channels, 1)
166
+ self.conv_v = nn.Conv1d(channels, channels, 1)
167
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
168
+ self.drop = nn.Dropout(p_dropout)
169
+
170
+ if window_size is not None:
171
+ n_heads_rel = 1 if heads_share else n_heads
172
+ rel_stddev = self.k_channels**-0.5
173
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
174
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
175
+
176
+ nn.init.xavier_uniform_(self.conv_q.weight)
177
+ nn.init.xavier_uniform_(self.conv_k.weight)
178
+ nn.init.xavier_uniform_(self.conv_v.weight)
179
+ if proximal_init:
180
+ with torch.no_grad():
181
+ self.conv_k.weight.copy_(self.conv_q.weight)
182
+ self.conv_k.bias.copy_(self.conv_q.bias)
183
+
184
+ def forward(self, x, c, attn_mask=None):
185
+ q = self.conv_q(x)
186
+ k = self.conv_k(c)
187
+ v = self.conv_v(c)
188
+
189
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
190
+
191
+ x = self.conv_o(x)
192
+ return x
193
+
194
+ def attention(self, query, key, value, mask=None):
195
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
196
+ b, d, t_s, t_t = (*key.size(), query.size(2))
197
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
198
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
199
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
200
+
201
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
202
+ if self.window_size is not None:
203
+ assert t_s == t_t, "Relative attention is only available for self-attention."
204
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
205
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
206
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
207
+ scores = scores + scores_local
208
+ if self.proximal_bias:
209
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
210
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
211
+ if mask is not None:
212
+ scores = scores.masked_fill(mask == 0, -1e4)
213
+ if self.block_length is not None:
214
+ assert t_s == t_t, "Local attention is only available for self-attention."
215
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
216
+ scores = scores.masked_fill(block_mask == 0, -1e4)
217
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
218
+ p_attn = self.drop(p_attn)
219
+ output = torch.matmul(p_attn, value)
220
+ if self.window_size is not None:
221
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
222
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
223
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
224
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
225
+ return output, p_attn
226
+
227
+ def _matmul_with_relative_values(self, x, y):
228
+ """
229
+ x: [b, h, l, m]
230
+ y: [h or 1, m, d]
231
+ ret: [b, h, l, d]
232
+ """
233
+ ret = torch.matmul(x, y.unsqueeze(0))
234
+ return ret
235
+
236
+ def _matmul_with_relative_keys(self, x, y):
237
+ """
238
+ x: [b, h, l, d]
239
+ y: [h or 1, m, d]
240
+ ret: [b, h, l, m]
241
+ """
242
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
243
+ return ret
244
+
245
+ def _get_relative_embeddings(self, relative_embeddings, length):
246
+ max_relative_position = 2 * self.window_size + 1
247
+ # Pad first before slice to avoid using cond ops.
248
+ pad_length = max(length - (self.window_size + 1), 0)
249
+ slice_start_position = max((self.window_size + 1) - length, 0)
250
+ slice_end_position = slice_start_position + 2 * length - 1
251
+ if pad_length > 0:
252
+ padded_relative_embeddings = F.pad(
253
+ relative_embeddings,
254
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
255
+ else:
256
+ padded_relative_embeddings = relative_embeddings
257
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
258
+ return used_relative_embeddings
259
+
260
+ def _relative_position_to_absolute_position(self, x):
261
+ """
262
+ x: [b, h, l, 2*l-1]
263
+ ret: [b, h, l, l]
264
+ """
265
+ batch, heads, length, _ = x.size()
266
+ # Concat columns of pad to shift from relative to absolute indexing.
267
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
268
+
269
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
270
+ x_flat = x.view([batch, heads, length * 2 * length])
271
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
272
+
273
+ # Reshape and slice out the padded elements.
274
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
275
+ return x_final
276
+
277
+ def _absolute_position_to_relative_position(self, x):
278
+ """
279
+ x: [b, h, l, l]
280
+ ret: [b, h, l, 2*l-1]
281
+ """
282
+ batch, heads, length, _ = x.size()
283
+ # padd along column
284
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
285
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
286
+ # add 0's in the beginning that will skew the elements after reshape
287
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
288
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
289
+ return x_final
290
+
291
+ def _attention_bias_proximal(self, length):
292
+ """Bias for self-attention to encourage attention to close positions.
293
+ Args:
294
+ length: an integer scalar.
295
+ Returns:
296
+ a Tensor with shape [1, 1, length, length]
297
+ """
298
+ r = torch.arange(length, dtype=torch.float32)
299
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
300
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
301
+
302
+
303
+ class FFN(nn.Module):
304
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
305
+ super().__init__()
306
+ self.in_channels = in_channels
307
+ self.out_channels = out_channels
308
+ self.filter_channels = filter_channels
309
+ self.kernel_size = kernel_size
310
+ self.p_dropout = p_dropout
311
+ self.activation = activation
312
+ self.causal = causal
313
+
314
+ if causal:
315
+ self.padding = self._causal_padding
316
+ else:
317
+ self.padding = self._same_padding
318
+
319
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
320
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
321
+ self.drop = nn.Dropout(p_dropout)
322
+
323
+ def forward(self, x, x_mask):
324
+ x = self.conv_1(self.padding(x * x_mask))
325
+ if self.activation == "gelu":
326
+ x = x * torch.sigmoid(1.702 * x)
327
+ else:
328
+ x = torch.relu(x)
329
+ x = self.drop(x)
330
+ x = self.conv_2(self.padding(x * x_mask))
331
+ return x * x_mask
332
+
333
+ def _causal_padding(self, x):
334
+ if self.kernel_size == 1:
335
+ return x
336
+ pad_l = self.kernel_size - 1
337
+ pad_r = 0
338
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
339
+ x = F.pad(x, commons.convert_pad_shape(padding))
340
+ return x
341
+
342
+ def _same_padding(self, x):
343
+ if self.kernel_size == 1:
344
+ return x
345
+ pad_l = (self.kernel_size - 1) // 2
346
+ pad_r = self.kernel_size // 2
347
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
348
+ x = F.pad(x, commons.convert_pad_shape(padding))
349
+ return x
modules/commons.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ def slice_pitch_segments(x, ids_str, segment_size=4):
8
+ ret = torch.zeros_like(x[:, :segment_size])
9
+ for i in range(x.size(0)):
10
+ idx_str = ids_str[i]
11
+ idx_end = idx_str + segment_size
12
+ ret[i] = x[i, idx_str:idx_end]
13
+ return ret
14
+
15
+ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
16
+ b, d, t = x.size()
17
+ if x_lengths is None:
18
+ x_lengths = t
19
+ ids_str_max = x_lengths - segment_size + 1
20
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
21
+ ret = slice_segments(x, ids_str, segment_size)
22
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
23
+ return ret, ret_pitch, ids_str
24
+
25
+ def init_weights(m, mean=0.0, std=0.01):
26
+ classname = m.__class__.__name__
27
+ if classname.find("Conv") != -1:
28
+ m.weight.data.normal_(mean, std)
29
+
30
+
31
+ def get_padding(kernel_size, dilation=1):
32
+ return int((kernel_size*dilation - dilation)/2)
33
+
34
+
35
+ def convert_pad_shape(pad_shape):
36
+ l = pad_shape[::-1]
37
+ pad_shape = [item for sublist in l for item in sublist]
38
+ return pad_shape
39
+
40
+
41
+ def intersperse(lst, item):
42
+ result = [item] * (len(lst) * 2 + 1)
43
+ result[1::2] = lst
44
+ return result
45
+
46
+
47
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
48
+ """KL(P||Q)"""
49
+ kl = (logs_q - logs_p) - 0.5
50
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
51
+ return kl
52
+
53
+
54
+ def rand_gumbel(shape):
55
+ """Sample from the Gumbel distribution, protect from overflows."""
56
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
57
+ return -torch.log(-torch.log(uniform_samples))
58
+
59
+
60
+ def rand_gumbel_like(x):
61
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
62
+ return g
63
+
64
+
65
+ def slice_segments(x, ids_str, segment_size=4):
66
+ ret = torch.zeros_like(x[:, :, :segment_size])
67
+ for i in range(x.size(0)):
68
+ idx_str = ids_str[i]
69
+ idx_end = idx_str + segment_size
70
+ ret[i] = x[i, :, idx_str:idx_end]
71
+ return ret
72
+
73
+
74
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
75
+ b, d, t = x.size()
76
+ if x_lengths is None:
77
+ x_lengths = t
78
+ ids_str_max = x_lengths - segment_size + 1
79
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
80
+ ret = slice_segments(x, ids_str, segment_size)
81
+ return ret, ids_str
82
+
83
+
84
+ def rand_spec_segments(x, x_lengths=None, segment_size=4):
85
+ b, d, t = x.size()
86
+ if x_lengths is None:
87
+ x_lengths = t
88
+ ids_str_max = x_lengths - segment_size
89
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
90
+ ret = slice_segments(x, ids_str, segment_size)
91
+ return ret, ids_str
92
+
93
+
94
+ def get_timing_signal_1d(
95
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
96
+ position = torch.arange(length, dtype=torch.float)
97
+ num_timescales = channels // 2
98
+ log_timescale_increment = (
99
+ math.log(float(max_timescale) / float(min_timescale)) /
100
+ (num_timescales - 1))
101
+ inv_timescales = min_timescale * torch.exp(
102
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
103
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
104
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
105
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
106
+ signal = signal.view(1, channels, length)
107
+ return signal
108
+
109
+
110
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
111
+ b, channels, length = x.size()
112
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
113
+ return x + signal.to(dtype=x.dtype, device=x.device)
114
+
115
+
116
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
117
+ b, channels, length = x.size()
118
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
119
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
120
+
121
+
122
+ def subsequent_mask(length):
123
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
124
+ return mask
125
+
126
+
127
+ @torch.jit.script
128
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
129
+ n_channels_int = n_channels[0]
130
+ in_act = input_a + input_b
131
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
132
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
133
+ acts = t_act * s_act
134
+ return acts
135
+
136
+
137
+ def convert_pad_shape(pad_shape):
138
+ l = pad_shape[::-1]
139
+ pad_shape = [item for sublist in l for item in sublist]
140
+ return pad_shape
141
+
142
+
143
+ def shift_1d(x):
144
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
+ return x
146
+
147
+
148
+ def sequence_mask(length, max_length=None):
149
+ if max_length is None:
150
+ max_length = length.max()
151
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
152
+ return x.unsqueeze(0) < length.unsqueeze(1)
153
+
154
+
155
+ def generate_path(duration, mask):
156
+ """
157
+ duration: [b, 1, t_x]
158
+ mask: [b, 1, t_y, t_x]
159
+ """
160
+ device = duration.device
161
+
162
+ b, _, t_y, t_x = mask.shape
163
+ cum_duration = torch.cumsum(duration, -1)
164
+
165
+ cum_duration_flat = cum_duration.view(b * t_x)
166
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
167
+ path = path.view(b, t_x, t_y)
168
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
169
+ path = path.unsqueeze(1).transpose(2,3) * mask
170
+ return path
171
+
172
+
173
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
174
+ if isinstance(parameters, torch.Tensor):
175
+ parameters = [parameters]
176
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
177
+ norm_type = float(norm_type)
178
+ if clip_value is not None:
179
+ clip_value = float(clip_value)
180
+
181
+ total_norm = 0
182
+ for p in parameters:
183
+ param_norm = p.grad.data.norm(norm_type)
184
+ total_norm += param_norm.item() ** norm_type
185
+ if clip_value is not None:
186
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
187
+ total_norm = total_norm ** (1. / norm_type)
188
+ return total_norm
modules/losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import modules.commons as commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+ #print(logs_p)
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
modules/mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
modules/modules.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm
11
+
12
+ import modules.commons as commons
13
+ from modules.commons import init_weights, get_padding
14
+
15
+
16
+ LRELU_SLOPE = 0.1
17
+
18
+
19
+ class LayerNorm(nn.Module):
20
+ def __init__(self, channels, eps=1e-5):
21
+ super().__init__()
22
+ self.channels = channels
23
+ self.eps = eps
24
+
25
+ self.gamma = nn.Parameter(torch.ones(channels))
26
+ self.beta = nn.Parameter(torch.zeros(channels))
27
+
28
+ def forward(self, x):
29
+ x = x.transpose(1, -1)
30
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
31
+ return x.transpose(1, -1)
32
+
33
+
34
+ class ConvReluNorm(nn.Module):
35
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
36
+ super().__init__()
37
+ self.in_channels = in_channels
38
+ self.hidden_channels = hidden_channels
39
+ self.out_channels = out_channels
40
+ self.kernel_size = kernel_size
41
+ self.n_layers = n_layers
42
+ self.p_dropout = p_dropout
43
+ assert n_layers > 1, "Number of layers should be larger than 0."
44
+
45
+ self.conv_layers = nn.ModuleList()
46
+ self.norm_layers = nn.ModuleList()
47
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
48
+ self.norm_layers.append(LayerNorm(hidden_channels))
49
+ self.relu_drop = nn.Sequential(
50
+ nn.ReLU(),
51
+ nn.Dropout(p_dropout))
52
+ for _ in range(n_layers-1):
53
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
54
+ self.norm_layers.append(LayerNorm(hidden_channels))
55
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
56
+ self.proj.weight.data.zero_()
57
+ self.proj.bias.data.zero_()
58
+
59
+ def forward(self, x, x_mask):
60
+ x_org = x
61
+ for i in range(self.n_layers):
62
+ x = self.conv_layers[i](x * x_mask)
63
+ x = self.norm_layers[i](x)
64
+ x = self.relu_drop(x)
65
+ x = x_org + self.proj(x)
66
+ return x * x_mask
67
+
68
+
69
+ class DDSConv(nn.Module):
70
+ """
71
+ Dialted and Depth-Separable Convolution
72
+ """
73
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
74
+ super().__init__()
75
+ self.channels = channels
76
+ self.kernel_size = kernel_size
77
+ self.n_layers = n_layers
78
+ self.p_dropout = p_dropout
79
+
80
+ self.drop = nn.Dropout(p_dropout)
81
+ self.convs_sep = nn.ModuleList()
82
+ self.convs_1x1 = nn.ModuleList()
83
+ self.norms_1 = nn.ModuleList()
84
+ self.norms_2 = nn.ModuleList()
85
+ for i in range(n_layers):
86
+ dilation = kernel_size ** i
87
+ padding = (kernel_size * dilation - dilation) // 2
88
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
89
+ groups=channels, dilation=dilation, padding=padding
90
+ ))
91
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
92
+ self.norms_1.append(LayerNorm(channels))
93
+ self.norms_2.append(LayerNorm(channels))
94
+
95
+ def forward(self, x, x_mask, g=None):
96
+ if g is not None:
97
+ x = x + g
98
+ for i in range(self.n_layers):
99
+ y = self.convs_sep[i](x * x_mask)
100
+ y = self.norms_1[i](y)
101
+ y = F.gelu(y)
102
+ y = self.convs_1x1[i](y)
103
+ y = self.norms_2[i](y)
104
+ y = F.gelu(y)
105
+ y = self.drop(y)
106
+ x = x + y
107
+ return x * x_mask
108
+
109
+
110
+ class WN(torch.nn.Module):
111
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
112
+ super(WN, self).__init__()
113
+ assert(kernel_size % 2 == 1)
114
+ self.hidden_channels =hidden_channels
115
+ self.kernel_size = kernel_size,
116
+ self.dilation_rate = dilation_rate
117
+ self.n_layers = n_layers
118
+ self.gin_channels = gin_channels
119
+ self.p_dropout = p_dropout
120
+
121
+ self.in_layers = torch.nn.ModuleList()
122
+ self.res_skip_layers = torch.nn.ModuleList()
123
+ self.drop = nn.Dropout(p_dropout)
124
+
125
+ if gin_channels != 0:
126
+ cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
127
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
128
+
129
+ for i in range(n_layers):
130
+ dilation = dilation_rate ** i
131
+ padding = int((kernel_size * dilation - dilation) / 2)
132
+ in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
133
+ dilation=dilation, padding=padding)
134
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
135
+ self.in_layers.append(in_layer)
136
+
137
+ # last one is not necessary
138
+ if i < n_layers - 1:
139
+ res_skip_channels = 2 * hidden_channels
140
+ else:
141
+ res_skip_channels = hidden_channels
142
+
143
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
144
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
145
+ self.res_skip_layers.append(res_skip_layer)
146
+
147
+ def forward(self, x, x_mask, g=None, **kwargs):
148
+ output = torch.zeros_like(x)
149
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
150
+
151
+ if g is not None:
152
+ g = self.cond_layer(g)
153
+
154
+ for i in range(self.n_layers):
155
+ x_in = self.in_layers[i](x)
156
+ if g is not None:
157
+ cond_offset = i * 2 * self.hidden_channels
158
+ g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
159
+ else:
160
+ g_l = torch.zeros_like(x_in)
161
+
162
+ acts = commons.fused_add_tanh_sigmoid_multiply(
163
+ x_in,
164
+ g_l,
165
+ n_channels_tensor)
166
+ acts = self.drop(acts)
167
+
168
+ res_skip_acts = self.res_skip_layers[i](acts)
169
+ if i < self.n_layers - 1:
170
+ res_acts = res_skip_acts[:,:self.hidden_channels,:]
171
+ x = (x + res_acts) * x_mask
172
+ output = output + res_skip_acts[:,self.hidden_channels:,:]
173
+ else:
174
+ output = output + res_skip_acts
175
+ return output * x_mask
176
+
177
+ def remove_weight_norm(self):
178
+ if self.gin_channels != 0:
179
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
180
+ for l in self.in_layers:
181
+ torch.nn.utils.remove_weight_norm(l)
182
+ for l in self.res_skip_layers:
183
+ torch.nn.utils.remove_weight_norm(l)
184
+
185
+
186
+ class ResBlock1(torch.nn.Module):
187
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
188
+ super(ResBlock1, self).__init__()
189
+ self.convs1 = nn.ModuleList([
190
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
191
+ padding=get_padding(kernel_size, dilation[0]))),
192
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
193
+ padding=get_padding(kernel_size, dilation[1]))),
194
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
195
+ padding=get_padding(kernel_size, dilation[2])))
196
+ ])
197
+ self.convs1.apply(init_weights)
198
+
199
+ self.convs2 = nn.ModuleList([
200
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
201
+ padding=get_padding(kernel_size, 1))),
202
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
203
+ padding=get_padding(kernel_size, 1))),
204
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
205
+ padding=get_padding(kernel_size, 1)))
206
+ ])
207
+ self.convs2.apply(init_weights)
208
+
209
+ def forward(self, x, x_mask=None):
210
+ for c1, c2 in zip(self.convs1, self.convs2):
211
+ xt = F.leaky_relu(x, LRELU_SLOPE)
212
+ if x_mask is not None:
213
+ xt = xt * x_mask
214
+ xt = c1(xt)
215
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
216
+ if x_mask is not None:
217
+ xt = xt * x_mask
218
+ xt = c2(xt)
219
+ x = xt + x
220
+ if x_mask is not None:
221
+ x = x * x_mask
222
+ return x
223
+
224
+ def remove_weight_norm(self):
225
+ for l in self.convs1:
226
+ remove_weight_norm(l)
227
+ for l in self.convs2:
228
+ remove_weight_norm(l)
229
+
230
+
231
+ class ResBlock2(torch.nn.Module):
232
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
233
+ super(ResBlock2, self).__init__()
234
+ self.convs = nn.ModuleList([
235
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
236
+ padding=get_padding(kernel_size, dilation[0]))),
237
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
238
+ padding=get_padding(kernel_size, dilation[1])))
239
+ ])
240
+ self.convs.apply(init_weights)
241
+
242
+ def forward(self, x, x_mask=None):
243
+ for c in self.convs:
244
+ xt = F.leaky_relu(x, LRELU_SLOPE)
245
+ if x_mask is not None:
246
+ xt = xt * x_mask
247
+ xt = c(xt)
248
+ x = xt + x
249
+ if x_mask is not None:
250
+ x = x * x_mask
251
+ return x
252
+
253
+ def remove_weight_norm(self):
254
+ for l in self.convs:
255
+ remove_weight_norm(l)
256
+
257
+
258
+ class Log(nn.Module):
259
+ def forward(self, x, x_mask, reverse=False, **kwargs):
260
+ if not reverse:
261
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
262
+ logdet = torch.sum(-y, [1, 2])
263
+ return y, logdet
264
+ else:
265
+ x = torch.exp(x) * x_mask
266
+ return x
267
+
268
+
269
+ class Flip(nn.Module):
270
+ def forward(self, x, *args, reverse=False, **kwargs):
271
+ x = torch.flip(x, [1])
272
+ if not reverse:
273
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
274
+ return x, logdet
275
+ else:
276
+ return x
277
+
278
+
279
+ class ElementwiseAffine(nn.Module):
280
+ def __init__(self, channels):
281
+ super().__init__()
282
+ self.channels = channels
283
+ self.m = nn.Parameter(torch.zeros(channels,1))
284
+ self.logs = nn.Parameter(torch.zeros(channels,1))
285
+
286
+ def forward(self, x, x_mask, reverse=False, **kwargs):
287
+ if not reverse:
288
+ y = self.m + torch.exp(self.logs) * x
289
+ y = y * x_mask
290
+ logdet = torch.sum(self.logs * x_mask, [1,2])
291
+ return y, logdet
292
+ else:
293
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
294
+ return x
295
+
296
+
297
+ class ResidualCouplingLayer(nn.Module):
298
+ def __init__(self,
299
+ channels,
300
+ hidden_channels,
301
+ kernel_size,
302
+ dilation_rate,
303
+ n_layers,
304
+ p_dropout=0,
305
+ gin_channels=0,
306
+ mean_only=False):
307
+ assert channels % 2 == 0, "channels should be divisible by 2"
308
+ super().__init__()
309
+ self.channels = channels
310
+ self.hidden_channels = hidden_channels
311
+ self.kernel_size = kernel_size
312
+ self.dilation_rate = dilation_rate
313
+ self.n_layers = n_layers
314
+ self.half_channels = channels // 2
315
+ self.mean_only = mean_only
316
+
317
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
318
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
319
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
320
+ self.post.weight.data.zero_()
321
+ self.post.bias.data.zero_()
322
+
323
+ def forward(self, x, x_mask, g=None, reverse=False):
324
+ x0, x1 = torch.split(x, [self.half_channels]*2, 1)
325
+ h = self.pre(x0) * x_mask
326
+ h = self.enc(h, x_mask, g=g)
327
+ stats = self.post(h) * x_mask
328
+ if not self.mean_only:
329
+ m, logs = torch.split(stats, [self.half_channels]*2, 1)
330
+ else:
331
+ m = stats
332
+ logs = torch.zeros_like(m)
333
+
334
+ if not reverse:
335
+ x1 = m + x1 * torch.exp(logs) * x_mask
336
+ x = torch.cat([x0, x1], 1)
337
+ logdet = torch.sum(logs, [1,2])
338
+ return x, logdet
339
+ else:
340
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
341
+ x = torch.cat([x0, x1], 1)
342
+ return x
onnx_export.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchaudio.models.wav2vec2.utils import import_fairseq_model
3
+ from fairseq import checkpoint_utils
4
+ from onnxexport.model_onnx import SynthesizerTrn
5
+ import utils
6
+
7
+ def get_hubert_model():
8
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
9
+ print("load model(s) from {}".format(vec_path))
10
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
11
+ [vec_path],
12
+ suffix="",
13
+ )
14
+ model = models[0]
15
+ model.eval()
16
+ return model
17
+
18
+
19
+ def main(HubertExport, NetExport):
20
+ path = "SoVits4.0"
21
+
22
+ '''if HubertExport:
23
+ device = torch.device("cpu")
24
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
25
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
26
+ [vec_path],
27
+ suffix="",
28
+ )
29
+ original = models[0]
30
+ original.eval()
31
+ model = original
32
+ test_input = torch.rand(1, 1, 16000)
33
+ model(test_input)
34
+ torch.onnx.export(model,
35
+ test_input,
36
+ "hubert4.0.onnx",
37
+ export_params=True,
38
+ opset_version=16,
39
+ do_constant_folding=True,
40
+ input_names=['source'],
41
+ output_names=['embed'],
42
+ dynamic_axes={
43
+ 'source':
44
+ {
45
+ 2: "sample_length"
46
+ },
47
+ }
48
+ )'''
49
+ if NetExport:
50
+ device = torch.device("cpu")
51
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
52
+ SVCVITS = SynthesizerTrn(
53
+ hps.data.filter_length // 2 + 1,
54
+ hps.train.segment_size // hps.data.hop_length,
55
+ **hps.model)
56
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
57
+ _ = SVCVITS.eval().to(device)
58
+ for i in SVCVITS.parameters():
59
+ i.requires_grad = False
60
+ test_hidden_unit = torch.rand(1, 10, 256)
61
+ test_pitch = torch.rand(1, 10)
62
+ test_mel2ph = torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0)
63
+ test_uv = torch.ones(1, 10, dtype=torch.float32)
64
+ test_noise = torch.randn(1, 192, 10)
65
+ test_sid = torch.LongTensor([0])
66
+ input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"]
67
+ output_names = ["audio", ]
68
+ SVCVITS.eval()
69
+ torch.onnx.export(SVCVITS,
70
+ (
71
+ test_hidden_unit.to(device),
72
+ test_pitch.to(device),
73
+ test_mel2ph.to(device),
74
+ test_uv.to(device),
75
+ test_noise.to(device),
76
+ test_sid.to(device)
77
+ ),
78
+ f"checkpoints/{path}/model.onnx",
79
+ dynamic_axes={
80
+ "c": [0, 1],
81
+ "f0": [1],
82
+ "mel2ph": [1],
83
+ "uv": [1],
84
+ "noise": [2],
85
+ },
86
+ do_constant_folding=False,
87
+ opset_version=16,
88
+ verbose=False,
89
+ input_names=input_names,
90
+ output_names=output_names)
91
+
92
+
93
+ if __name__ == '__main__':
94
+ main(False, True)
onnxexport/model_onnx.py ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ from torch.nn import functional as F
4
+
5
+ import modules.attentions as attentions
6
+ import modules.commons as commons
7
+ import modules.modules as modules
8
+
9
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
10
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
11
+
12
+ import utils
13
+ from modules.commons import init_weights, get_padding
14
+ from vdecoder.hifigan.models import Generator
15
+ from utils import f0_to_coarse
16
+
17
+
18
+ class ResidualCouplingBlock(nn.Module):
19
+ def __init__(self,
20
+ channels,
21
+ hidden_channels,
22
+ kernel_size,
23
+ dilation_rate,
24
+ n_layers,
25
+ n_flows=4,
26
+ gin_channels=0):
27
+ super().__init__()
28
+ self.channels = channels
29
+ self.hidden_channels = hidden_channels
30
+ self.kernel_size = kernel_size
31
+ self.dilation_rate = dilation_rate
32
+ self.n_layers = n_layers
33
+ self.n_flows = n_flows
34
+ self.gin_channels = gin_channels
35
+
36
+ self.flows = nn.ModuleList()
37
+ for i in range(n_flows):
38
+ self.flows.append(
39
+ modules.ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
40
+ gin_channels=gin_channels, mean_only=True))
41
+ self.flows.append(modules.Flip())
42
+
43
+ def forward(self, x, x_mask, g=None, reverse=False):
44
+ if not reverse:
45
+ for flow in self.flows:
46
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
47
+ else:
48
+ for flow in reversed(self.flows):
49
+ x = flow(x, x_mask, g=g, reverse=reverse)
50
+ return x
51
+
52
+
53
+ class Encoder(nn.Module):
54
+ def __init__(self,
55
+ in_channels,
56
+ out_channels,
57
+ hidden_channels,
58
+ kernel_size,
59
+ dilation_rate,
60
+ n_layers,
61
+ gin_channels=0):
62
+ super().__init__()
63
+ self.in_channels = in_channels
64
+ self.out_channels = out_channels
65
+ self.hidden_channels = hidden_channels
66
+ self.kernel_size = kernel_size
67
+ self.dilation_rate = dilation_rate
68
+ self.n_layers = n_layers
69
+ self.gin_channels = gin_channels
70
+
71
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
72
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
73
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
74
+
75
+ def forward(self, x, x_lengths, g=None):
76
+ # print(x.shape,x_lengths.shape)
77
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
78
+ x = self.pre(x) * x_mask
79
+ x = self.enc(x, x_mask, g=g)
80
+ stats = self.proj(x) * x_mask
81
+ m, logs = torch.split(stats, self.out_channels, dim=1)
82
+ z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
83
+ return z, m, logs, x_mask
84
+
85
+
86
+ class TextEncoder(nn.Module):
87
+ def __init__(self,
88
+ out_channels,
89
+ hidden_channels,
90
+ kernel_size,
91
+ n_layers,
92
+ gin_channels=0,
93
+ filter_channels=None,
94
+ n_heads=None,
95
+ p_dropout=None):
96
+ super().__init__()
97
+ self.out_channels = out_channels
98
+ self.hidden_channels = hidden_channels
99
+ self.kernel_size = kernel_size
100
+ self.n_layers = n_layers
101
+ self.gin_channels = gin_channels
102
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
103
+ self.f0_emb = nn.Embedding(256, hidden_channels)
104
+
105
+ self.enc_ = attentions.Encoder(
106
+ hidden_channels,
107
+ filter_channels,
108
+ n_heads,
109
+ n_layers,
110
+ kernel_size,
111
+ p_dropout)
112
+
113
+ def forward(self, x, x_mask, f0=None, z=None):
114
+ x = x + self.f0_emb(f0).transpose(1, 2)
115
+ x = self.enc_(x * x_mask, x_mask)
116
+ stats = self.proj(x) * x_mask
117
+ m, logs = torch.split(stats, self.out_channels, dim=1)
118
+ z = (m + z * torch.exp(logs)) * x_mask
119
+ return z, m, logs, x_mask
120
+
121
+
122
+ class DiscriminatorP(torch.nn.Module):
123
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
124
+ super(DiscriminatorP, self).__init__()
125
+ self.period = period
126
+ self.use_spectral_norm = use_spectral_norm
127
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
128
+ self.convs = nn.ModuleList([
129
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
130
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
131
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
132
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
133
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
134
+ ])
135
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
136
+
137
+ def forward(self, x):
138
+ fmap = []
139
+
140
+ # 1d to 2d
141
+ b, c, t = x.shape
142
+ if t % self.period != 0: # pad first
143
+ n_pad = self.period - (t % self.period)
144
+ x = F.pad(x, (0, n_pad), "reflect")
145
+ t = t + n_pad
146
+ x = x.view(b, c, t // self.period, self.period)
147
+
148
+ for l in self.convs:
149
+ x = l(x)
150
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
151
+ fmap.append(x)
152
+ x = self.conv_post(x)
153
+ fmap.append(x)
154
+ x = torch.flatten(x, 1, -1)
155
+
156
+ return x, fmap
157
+
158
+
159
+ class DiscriminatorS(torch.nn.Module):
160
+ def __init__(self, use_spectral_norm=False):
161
+ super(DiscriminatorS, self).__init__()
162
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
163
+ self.convs = nn.ModuleList([
164
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
165
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
166
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
167
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
168
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
169
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
170
+ ])
171
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
172
+
173
+ def forward(self, x):
174
+ fmap = []
175
+
176
+ for l in self.convs:
177
+ x = l(x)
178
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
179
+ fmap.append(x)
180
+ x = self.conv_post(x)
181
+ fmap.append(x)
182
+ x = torch.flatten(x, 1, -1)
183
+
184
+ return x, fmap
185
+
186
+
187
+ class F0Decoder(nn.Module):
188
+ def __init__(self,
189
+ out_channels,
190
+ hidden_channels,
191
+ filter_channels,
192
+ n_heads,
193
+ n_layers,
194
+ kernel_size,
195
+ p_dropout,
196
+ spk_channels=0):
197
+ super().__init__()
198
+ self.out_channels = out_channels
199
+ self.hidden_channels = hidden_channels
200
+ self.filter_channels = filter_channels
201
+ self.n_heads = n_heads
202
+ self.n_layers = n_layers
203
+ self.kernel_size = kernel_size
204
+ self.p_dropout = p_dropout
205
+ self.spk_channels = spk_channels
206
+
207
+ self.prenet = nn.Conv1d(hidden_channels, hidden_channels, 3, padding=1)
208
+ self.decoder = attentions.FFT(
209
+ hidden_channels,
210
+ filter_channels,
211
+ n_heads,
212
+ n_layers,
213
+ kernel_size,
214
+ p_dropout)
215
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
216
+ self.f0_prenet = nn.Conv1d(1, hidden_channels, 3, padding=1)
217
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
218
+
219
+ def forward(self, x, norm_f0, x_mask, spk_emb=None):
220
+ x = torch.detach(x)
221
+ if spk_emb is not None:
222
+ x = x + self.cond(spk_emb)
223
+ x += self.f0_prenet(norm_f0)
224
+ x = self.prenet(x) * x_mask
225
+ x = self.decoder(x * x_mask, x_mask)
226
+ x = self.proj(x) * x_mask
227
+ return x
228
+
229
+
230
+ class SynthesizerTrn(nn.Module):
231
+ """
232
+ Synthesizer for Training
233
+ """
234
+
235
+ def __init__(self,
236
+ spec_channels,
237
+ segment_size,
238
+ inter_channels,
239
+ hidden_channels,
240
+ filter_channels,
241
+ n_heads,
242
+ n_layers,
243
+ kernel_size,
244
+ p_dropout,
245
+ resblock,
246
+ resblock_kernel_sizes,
247
+ resblock_dilation_sizes,
248
+ upsample_rates,
249
+ upsample_initial_channel,
250
+ upsample_kernel_sizes,
251
+ gin_channels,
252
+ ssl_dim,
253
+ n_speakers,
254
+ sampling_rate=44100,
255
+ **kwargs):
256
+ super().__init__()
257
+ self.spec_channels = spec_channels
258
+ self.inter_channels = inter_channels
259
+ self.hidden_channels = hidden_channels
260
+ self.filter_channels = filter_channels
261
+ self.n_heads = n_heads
262
+ self.n_layers = n_layers
263
+ self.kernel_size = kernel_size
264
+ self.p_dropout = p_dropout
265
+ self.resblock = resblock
266
+ self.resblock_kernel_sizes = resblock_kernel_sizes
267
+ self.resblock_dilation_sizes = resblock_dilation_sizes
268
+ self.upsample_rates = upsample_rates
269
+ self.upsample_initial_channel = upsample_initial_channel
270
+ self.upsample_kernel_sizes = upsample_kernel_sizes
271
+ self.segment_size = segment_size
272
+ self.gin_channels = gin_channels
273
+ self.ssl_dim = ssl_dim
274
+ self.emb_g = nn.Embedding(n_speakers, gin_channels)
275
+
276
+ self.pre = nn.Conv1d(ssl_dim, hidden_channels, kernel_size=5, padding=2)
277
+
278
+ self.enc_p = TextEncoder(
279
+ inter_channels,
280
+ hidden_channels,
281
+ filter_channels=filter_channels,
282
+ n_heads=n_heads,
283
+ n_layers=n_layers,
284
+ kernel_size=kernel_size,
285
+ p_dropout=p_dropout
286
+ )
287
+ hps = {
288
+ "sampling_rate": sampling_rate,
289
+ "inter_channels": inter_channels,
290
+ "resblock": resblock,
291
+ "resblock_kernel_sizes": resblock_kernel_sizes,
292
+ "resblock_dilation_sizes": resblock_dilation_sizes,
293
+ "upsample_rates": upsample_rates,
294
+ "upsample_initial_channel": upsample_initial_channel,
295
+ "upsample_kernel_sizes": upsample_kernel_sizes,
296
+ "gin_channels": gin_channels,
297
+ }
298
+ self.dec = Generator(h=hps)
299
+ self.enc_q = Encoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
300
+ self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
301
+ self.f0_decoder = F0Decoder(
302
+ 1,
303
+ hidden_channels,
304
+ filter_channels,
305
+ n_heads,
306
+ n_layers,
307
+ kernel_size,
308
+ p_dropout,
309
+ spk_channels=gin_channels
310
+ )
311
+ self.emb_uv = nn.Embedding(2, hidden_channels)
312
+ self.predict_f0 = False
313
+
314
+ def forward(self, c, f0, mel2ph, uv, noise=None, g=None):
315
+
316
+ decoder_inp = F.pad(c, [0, 0, 1, 0])
317
+ mel2ph_ = mel2ph.unsqueeze(2).repeat([1, 1, c.shape[-1]])
318
+ c = torch.gather(decoder_inp, 1, mel2ph_).transpose(1, 2) # [B, T, H]
319
+
320
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
321
+ g = g.unsqueeze(0)
322
+ g = self.emb_g(g).transpose(1, 2)
323
+ x_mask = torch.unsqueeze(commons.sequence_mask(c_lengths, c.size(2)), 1).to(c.dtype)
324
+ x = self.pre(c) * x_mask + self.emb_uv(uv.long()).transpose(1, 2)
325
+
326
+ if self.predict_f0:
327
+ lf0 = 2595. * torch.log10(1. + f0.unsqueeze(1) / 700.) / 500
328
+ norm_lf0 = utils.normalize_f0(lf0, x_mask, uv, random_scale=False)
329
+ pred_lf0 = self.f0_decoder(x, norm_lf0, x_mask, spk_emb=g)
330
+ f0 = (700 * (torch.pow(10, pred_lf0 * 500 / 2595) - 1)).squeeze(1)
331
+
332
+ z_p, m_p, logs_p, c_mask = self.enc_p(x, x_mask, f0=f0_to_coarse(f0), z=noise)
333
+ z = self.flow(z_p, c_mask, g=g, reverse=True)
334
+ o = self.dec(z * c_mask, g=g, f0=f0)
335
+ return o
preprocess_flist_config.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import re
4
+
5
+ from tqdm import tqdm
6
+ from random import shuffle
7
+ import json
8
+ import wave
9
+
10
+ config_template = json.load(open("configs/config.json"))
11
+
12
+ pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
13
+
14
+ def get_wav_duration(file_path):
15
+ with wave.open(file_path, 'rb') as wav_file:
16
+ # 获取音频帧数
17
+ n_frames = wav_file.getnframes()
18
+ # 获取采样率
19
+ framerate = wav_file.getframerate()
20
+ # 计算时长(秒)
21
+ duration = n_frames / float(framerate)
22
+ return duration
23
+
24
+ if __name__ == "__main__":
25
+ parser = argparse.ArgumentParser()
26
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
27
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
28
+ parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
29
+ parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
30
+ args = parser.parse_args()
31
+
32
+ train = []
33
+ val = []
34
+ test = []
35
+ idx = 0
36
+ spk_dict = {}
37
+ spk_id = 0
38
+ for speaker in tqdm(os.listdir(args.source_dir)):
39
+ spk_dict[speaker] = spk_id
40
+ spk_id += 1
41
+ wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
42
+ new_wavs = []
43
+ for file in wavs:
44
+ if not file.endswith("wav"):
45
+ continue
46
+ if not pattern.match(file):
47
+ print(f"warning:文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
48
+ if get_wav_duration(file) < 0.3:
49
+ print("skip too short audio:", file)
50
+ continue
51
+ new_wavs.append(file)
52
+ wavs = new_wavs
53
+ shuffle(wavs)
54
+ train += wavs[2:-2]
55
+ val += wavs[:2]
56
+ test += wavs[-2:]
57
+
58
+ shuffle(train)
59
+ shuffle(val)
60
+ shuffle(test)
61
+
62
+ print("Writing", args.train_list)
63
+ with open(args.train_list, "w") as f:
64
+ for fname in tqdm(train):
65
+ wavpath = fname
66
+ f.write(wavpath + "\n")
67
+
68
+ print("Writing", args.val_list)
69
+ with open(args.val_list, "w") as f:
70
+ for fname in tqdm(val):
71
+ wavpath = fname
72
+ f.write(wavpath + "\n")
73
+
74
+ print("Writing", args.test_list)
75
+ with open(args.test_list, "w") as f:
76
+ for fname in tqdm(test):
77
+ wavpath = fname
78
+ f.write(wavpath + "\n")
79
+
80
+ config_template["spk"] = spk_dict
81
+ print("Writing configs/config.json")
82
+ with open("configs/config.json", "w") as f:
83
+ json.dump(config_template, f, indent=2)
preprocess_hubert_f0.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import multiprocessing
3
+ import os
4
+ import argparse
5
+ from random import shuffle
6
+
7
+ import torch
8
+ from glob import glob
9
+ from tqdm import tqdm
10
+
11
+ import utils
12
+ import logging
13
+ logging.getLogger('numba').setLevel(logging.WARNING)
14
+ import librosa
15
+ import numpy as np
16
+
17
+ hps = utils.get_hparams_from_file("configs/config.json")
18
+ sampling_rate = hps.data.sampling_rate
19
+ hop_length = hps.data.hop_length
20
+
21
+
22
+ def process_one(filename, hmodel):
23
+ # print(filename)
24
+ wav, sr = librosa.load(filename, sr=sampling_rate)
25
+ soft_path = filename + ".soft.pt"
26
+ if not os.path.exists(soft_path):
27
+ devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
+ wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
29
+ wav16k = torch.from_numpy(wav16k).to(devive)
30
+ c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
31
+ torch.save(c.cpu(), soft_path)
32
+ f0_path = filename + ".f0.npy"
33
+ if not os.path.exists(f0_path):
34
+ f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
35
+ np.save(f0_path, f0)
36
+
37
+
38
+ def process_batch(filenames):
39
+ print("Loading hubert for content...")
40
+ device = "cuda" if torch.cuda.is_available() else "cpu"
41
+ hmodel = utils.get_hubert_model().to(device)
42
+ print("Loaded hubert.")
43
+ for filename in tqdm(filenames):
44
+ process_one(filename, hmodel)
45
+
46
+
47
+ if __name__ == "__main__":
48
+ parser = argparse.ArgumentParser()
49
+ parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
50
+
51
+ args = parser.parse_args()
52
+ filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
53
+ shuffle(filenames)
54
+ multiprocessing.set_start_method('spawn',force=True)
55
+
56
+ num_processes = 1
57
+ chunk_size = int(math.ceil(len(filenames) / num_processes))
58
+ chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
59
+ print([len(c) for c in chunks])
60
+ processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
61
+ for p in processes:
62
+ p.start()
python ADDED
File without changes
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Flask
2
+ Flask_Cors
3
+ gradio
4
+ numpy==1.20.3
5
+ pyworld==0.2.5
6
+ scipy==1.7.3
7
+ SoundFile==0.12.1
8
+ torch==1.13.1
9
+ torchaudio==0.13.1
10
+ tqdm
11
+ scikit-maad
12
+ praat-parselmouth
13
+ onnx
14
+ onnxsim
15
+ onnxoptimizer
16
+ fairseq==0.12.2
17
+ librosa==0.8.1
18
+ tensorboard
requirements_win.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ librosa==0.9.2
2
+ fairseq==0.12.2
3
+ Flask==2.1.2
4
+ Flask_Cors==3.0.10
5
+ gradio==3.4.1
6
+ numpy==1.20.0
7
+ playsound==1.3.0
8
+ PyAudio==0.2.12
9
+ pydub==0.25.1
10
+ pyworld==0.3.0
11
+ requests==2.28.1
12
+ scipy==1.7.3
13
+ sounddevice==0.4.5
14
+ SoundFile==0.10.3.post1
15
+ starlette==0.19.1
16
+ torch==1.12.0+cu116
17
+ torchaudio==0.12.0+cu116
18
+ tqdm==4.63.0
19
+ scikit-maad
20
+ praat-parselmouth
21
+ onnx
22
+ onnxsim
23
+ onnxoptimizer
resample.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ from multiprocessing import Pool, cpu_count
6
+ from scipy.io import wavfile
7
+ from tqdm import tqdm
8
+
9
+
10
+ def process(item):
11
+ spkdir, wav_name, args = item
12
+ # speaker 's5', 'p280', 'p315' are excluded,
13
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
14
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
15
+ if os.path.exists(wav_path) and '.wav' in wav_path:
16
+ os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
17
+ wav, sr = librosa.load(wav_path, sr=None)
18
+ wav, _ = librosa.effects.trim(wav, top_db=20)
19
+ peak = np.abs(wav).max()
20
+ if peak > 1.0:
21
+ wav = 0.98 * wav / peak
22
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
23
+ wav2 /= max(wav2.max(), -wav2.min())
24
+ save_name = wav_name
25
+ save_path2 = os.path.join(args.out_dir2, speaker, save_name)
26
+ wavfile.write(
27
+ save_path2,
28
+ args.sr2,
29
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
30
+ )
31
+
32
+
33
+
34
+ if __name__ == "__main__":
35
+ parser = argparse.ArgumentParser()
36
+ parser.add_argument("--sr2", type=int, default=44100, help="sampling rate")
37
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
38
+ parser.add_argument("--out_dir2", type=str, default="./dataset/44k", help="path to target dir")
39
+ args = parser.parse_args()
40
+ processs = cpu_count()-2 if cpu_count() >4 else 1
41
+ pool = Pool(processes=processs)
42
+
43
+ for speaker in os.listdir(args.in_dir):
44
+ spk_dir = os.path.join(args.in_dir, speaker)
45
+ if os.path.isdir(spk_dir):
46
+ print(spk_dir)
47
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
48
+ pass
spec_gen.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data_utils import TextAudioSpeakerLoader
2
+ import json
3
+ from tqdm import tqdm
4
+
5
+ from utils import HParams
6
+
7
+ config_path = 'configs/config.json'
8
+ with open(config_path, "r") as f:
9
+ data = f.read()
10
+ config = json.loads(data)
11
+ hps = HParams(**config)
12
+
13
+ train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
14
+ test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
15
+ eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
16
+
17
+ for _ in tqdm(train_dataset):
18
+ pass
19
+ for _ in tqdm(eval_dataset):
20
+ pass
21
+ for _ in tqdm(test_dataset):
22
+ pass
temp.wav ADDED
Binary file (358 kB). View file
 
train.py ADDED
@@ -0,0 +1,310 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import multiprocessing
3
+ import time
4
+
5
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
6
+ import os
7
+ import json
8
+ import argparse
9
+ import itertools
10
+ import math
11
+ import torch
12
+ from torch import nn, optim
13
+ from torch.nn import functional as F
14
+ from torch.utils.data import DataLoader
15
+ from torch.utils.tensorboard import SummaryWriter
16
+ import torch.multiprocessing as mp
17
+ import torch.distributed as dist
18
+ from torch.nn.parallel import DistributedDataParallel as DDP
19
+ from torch.cuda.amp import autocast, GradScaler
20
+
21
+ import modules.commons as commons
22
+ import utils
23
+ from data_utils import TextAudioSpeakerLoader, TextAudioCollate
24
+ from models import (
25
+ SynthesizerTrn,
26
+ MultiPeriodDiscriminator,
27
+ )
28
+ from modules.losses import (
29
+ kl_loss,
30
+ generator_loss, discriminator_loss, feature_loss
31
+ )
32
+
33
+ from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
34
+
35
+ torch.backends.cudnn.benchmark = True
36
+ global_step = 0
37
+ start_time = time.time()
38
+
39
+ # os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
40
+
41
+
42
+ def main():
43
+ """Assume Single Node Multi GPUs Training Only"""
44
+ assert torch.cuda.is_available(), "CPU training is not allowed."
45
+ hps = utils.get_hparams()
46
+
47
+ n_gpus = torch.cuda.device_count()
48
+ os.environ['MASTER_ADDR'] = 'localhost'
49
+ os.environ['MASTER_PORT'] = hps.train.port
50
+
51
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
52
+
53
+
54
+ def run(rank, n_gpus, hps):
55
+ global global_step
56
+ if rank == 0:
57
+ logger = utils.get_logger(hps.model_dir)
58
+ logger.info(hps)
59
+ utils.check_git_hash(hps.model_dir)
60
+ writer = SummaryWriter(log_dir=hps.model_dir)
61
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
62
+
63
+ # for pytorch on win, backend use gloo
64
+ dist.init_process_group(backend= 'gloo' if os.name == 'nt' else 'nccl', init_method='env://', world_size=n_gpus, rank=rank)
65
+ torch.manual_seed(hps.train.seed)
66
+ torch.cuda.set_device(rank)
67
+ collate_fn = TextAudioCollate()
68
+ train_dataset = TextAudioSpeakerLoader(hps.data.training_files, hps)
69
+ num_workers = 5 if multiprocessing.cpu_count() > 4 else multiprocessing.cpu_count()
70
+ train_loader = DataLoader(train_dataset, num_workers=num_workers, shuffle=False, pin_memory=True,
71
+ batch_size=hps.train.batch_size, collate_fn=collate_fn)
72
+ if rank == 0:
73
+ eval_dataset = TextAudioSpeakerLoader(hps.data.validation_files, hps)
74
+ eval_loader = DataLoader(eval_dataset, num_workers=1, shuffle=False,
75
+ batch_size=1, pin_memory=False,
76
+ drop_last=False, collate_fn=collate_fn)
77
+
78
+ net_g = SynthesizerTrn(
79
+ hps.data.filter_length // 2 + 1,
80
+ hps.train.segment_size // hps.data.hop_length,
81
+ **hps.model).cuda(rank)
82
+ net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
83
+ optim_g = torch.optim.AdamW(
84
+ net_g.parameters(),
85
+ hps.train.learning_rate,
86
+ betas=hps.train.betas,
87
+ eps=hps.train.eps)
88
+ optim_d = torch.optim.AdamW(
89
+ net_d.parameters(),
90
+ hps.train.learning_rate,
91
+ betas=hps.train.betas,
92
+ eps=hps.train.eps)
93
+ net_g = DDP(net_g, device_ids=[rank]) # , find_unused_parameters=True)
94
+ net_d = DDP(net_d, device_ids=[rank])
95
+
96
+ skip_optimizer = False
97
+ try:
98
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
99
+ optim_g, skip_optimizer)
100
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
101
+ optim_d, skip_optimizer)
102
+ epoch_str = max(epoch_str, 1)
103
+ global_step = (epoch_str - 1) * len(train_loader)
104
+ except:
105
+ print("load old checkpoint failed...")
106
+ epoch_str = 1
107
+ global_step = 0
108
+ if skip_optimizer:
109
+ epoch_str = 1
110
+ global_step = 0
111
+
112
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
113
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
114
+
115
+ scaler = GradScaler(enabled=hps.train.fp16_run)
116
+
117
+ for epoch in range(epoch_str, hps.train.epochs + 1):
118
+ if rank == 0:
119
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
120
+ [train_loader, eval_loader], logger, [writer, writer_eval])
121
+ else:
122
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
123
+ [train_loader, None], None, None)
124
+ scheduler_g.step()
125
+ scheduler_d.step()
126
+
127
+
128
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
129
+ net_g, net_d = nets
130
+ optim_g, optim_d = optims
131
+ scheduler_g, scheduler_d = schedulers
132
+ train_loader, eval_loader = loaders
133
+ if writers is not None:
134
+ writer, writer_eval = writers
135
+
136
+ # train_loader.batch_sampler.set_epoch(epoch)
137
+ global global_step
138
+
139
+ net_g.train()
140
+ net_d.train()
141
+ for batch_idx, items in enumerate(train_loader):
142
+ c, f0, spec, y, spk, lengths, uv = items
143
+ g = spk.cuda(rank, non_blocking=True)
144
+ spec, y = spec.cuda(rank, non_blocking=True), y.cuda(rank, non_blocking=True)
145
+ c = c.cuda(rank, non_blocking=True)
146
+ f0 = f0.cuda(rank, non_blocking=True)
147
+ uv = uv.cuda(rank, non_blocking=True)
148
+ lengths = lengths.cuda(rank, non_blocking=True)
149
+ mel = spec_to_mel_torch(
150
+ spec,
151
+ hps.data.filter_length,
152
+ hps.data.n_mel_channels,
153
+ hps.data.sampling_rate,
154
+ hps.data.mel_fmin,
155
+ hps.data.mel_fmax)
156
+
157
+ with autocast(enabled=hps.train.fp16_run):
158
+ y_hat, ids_slice, z_mask, \
159
+ (z, z_p, m_p, logs_p, m_q, logs_q), pred_lf0, norm_lf0, lf0 = net_g(c, f0, uv, spec, g=g, c_lengths=lengths,
160
+ spec_lengths=lengths)
161
+
162
+ y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
163
+ y_hat_mel = mel_spectrogram_torch(
164
+ y_hat.squeeze(1),
165
+ hps.data.filter_length,
166
+ hps.data.n_mel_channels,
167
+ hps.data.sampling_rate,
168
+ hps.data.hop_length,
169
+ hps.data.win_length,
170
+ hps.data.mel_fmin,
171
+ hps.data.mel_fmax
172
+ )
173
+ y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
174
+
175
+ # Discriminator
176
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
177
+
178
+ with autocast(enabled=False):
179
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
180
+ loss_disc_all = loss_disc
181
+
182
+ optim_d.zero_grad()
183
+ scaler.scale(loss_disc_all).backward()
184
+ scaler.unscale_(optim_d)
185
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
186
+ scaler.step(optim_d)
187
+
188
+ with autocast(enabled=hps.train.fp16_run):
189
+ # Generator
190
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
191
+ with autocast(enabled=False):
192
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
193
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
194
+ loss_fm = feature_loss(fmap_r, fmap_g)
195
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
196
+ loss_lf0 = F.mse_loss(pred_lf0, lf0)
197
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl + loss_lf0
198
+ optim_g.zero_grad()
199
+ scaler.scale(loss_gen_all).backward()
200
+ scaler.unscale_(optim_g)
201
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
202
+ scaler.step(optim_g)
203
+ scaler.update()
204
+
205
+ if rank == 0:
206
+ if global_step % hps.train.log_interval == 0:
207
+ lr = optim_g.param_groups[0]['lr']
208
+ losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
209
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
210
+ epoch,
211
+ 100. * batch_idx / len(train_loader)))
212
+ logger.info(f"Losses: {[x.item() for x in losses]}, step: {global_step}, lr: {lr}")
213
+
214
+ scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
215
+ "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
216
+ scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl,
217
+ "loss/g/lf0": loss_lf0})
218
+
219
+ # scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
220
+ # scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
221
+ # scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
222
+ image_dict = {
223
+ "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
224
+ "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
225
+ "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
226
+ "all/lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
227
+ pred_lf0[0, 0, :].detach().cpu().numpy()),
228
+ "all/norm_lf0": utils.plot_data_to_numpy(lf0[0, 0, :].cpu().numpy(),
229
+ norm_lf0[0, 0, :].detach().cpu().numpy())
230
+ }
231
+
232
+ utils.summarize(
233
+ writer=writer,
234
+ global_step=global_step,
235
+ images=image_dict,
236
+ scalars=scalar_dict
237
+ )
238
+
239
+ if global_step % hps.train.eval_interval == 0:
240
+ evaluate(hps, net_g, eval_loader, writer_eval)
241
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
242
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
243
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
244
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
245
+ keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
246
+ if keep_ckpts > 0:
247
+ utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
248
+
249
+ global_step += 1
250
+
251
+ if rank == 0:
252
+ global start_time
253
+ now = time.time()
254
+ durtaion = format(now - start_time, '.2f')
255
+ logger.info(f'====> Epoch: {epoch}, cost {durtaion} s')
256
+ start_time = now
257
+
258
+
259
+ def evaluate(hps, generator, eval_loader, writer_eval):
260
+ generator.eval()
261
+ image_dict = {}
262
+ audio_dict = {}
263
+ with torch.no_grad():
264
+ for batch_idx, items in enumerate(eval_loader):
265
+ c, f0, spec, y, spk, _, uv = items
266
+ g = spk[:1].cuda(0)
267
+ spec, y = spec[:1].cuda(0), y[:1].cuda(0)
268
+ c = c[:1].cuda(0)
269
+ f0 = f0[:1].cuda(0)
270
+ uv= uv[:1].cuda(0)
271
+ mel = spec_to_mel_torch(
272
+ spec,
273
+ hps.data.filter_length,
274
+ hps.data.n_mel_channels,
275
+ hps.data.sampling_rate,
276
+ hps.data.mel_fmin,
277
+ hps.data.mel_fmax)
278
+ y_hat = generator.module.infer(c, f0, uv, g=g)
279
+
280
+ y_hat_mel = mel_spectrogram_torch(
281
+ y_hat.squeeze(1).float(),
282
+ hps.data.filter_length,
283
+ hps.data.n_mel_channels,
284
+ hps.data.sampling_rate,
285
+ hps.data.hop_length,
286
+ hps.data.win_length,
287
+ hps.data.mel_fmin,
288
+ hps.data.mel_fmax
289
+ )
290
+
291
+ audio_dict.update({
292
+ f"gen/audio_{batch_idx}": y_hat[0],
293
+ f"gt/audio_{batch_idx}": y[0]
294
+ })
295
+ image_dict.update({
296
+ f"gen/mel": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
297
+ "gt/mel": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
298
+ })
299
+ utils.summarize(
300
+ writer=writer_eval,
301
+ global_step=global_step,
302
+ images=image_dict,
303
+ audios=audio_dict,
304
+ audio_sampling_rate=hps.data.sampling_rate
305
+ )
306
+ generator.train()
307
+
308
+
309
+ if __name__ == "__main__":
310
+ main()
utils.py ADDED
@@ -0,0 +1,502 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import re
4
+ import sys
5
+ import argparse
6
+ import logging
7
+ import json
8
+ import subprocess
9
+ import random
10
+
11
+ import librosa
12
+ import numpy as np
13
+ from scipy.io.wavfile import read
14
+ import torch
15
+ from torch.nn import functional as F
16
+ from modules.commons import sequence_mask
17
+ from hubert import hubert_model
18
+ MATPLOTLIB_FLAG = False
19
+
20
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
21
+ logger = logging
22
+
23
+ f0_bin = 256
24
+ f0_max = 1100.0
25
+ f0_min = 50.0
26
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
27
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
28
+
29
+
30
+ # def normalize_f0(f0, random_scale=True):
31
+ # f0_norm = f0.clone() # create a copy of the input Tensor
32
+ # batch_size, _, frame_length = f0_norm.shape
33
+ # for i in range(batch_size):
34
+ # means = torch.mean(f0_norm[i, 0, :])
35
+ # if random_scale:
36
+ # factor = random.uniform(0.8, 1.2)
37
+ # else:
38
+ # factor = 1
39
+ # f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
40
+ # return f0_norm
41
+ # def normalize_f0(f0, random_scale=True):
42
+ # means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
43
+ # if random_scale:
44
+ # factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
45
+ # else:
46
+ # factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
47
+ # f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
48
+ # return f0_norm
49
+ def normalize_f0(f0, x_mask, uv, random_scale=True):
50
+ # calculate means based on x_mask
51
+ uv_sum = torch.sum(uv, dim=1, keepdim=True)
52
+ uv_sum[uv_sum == 0] = 9999
53
+ means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
54
+
55
+ if random_scale:
56
+ factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
57
+ else:
58
+ factor = torch.ones(f0.shape[0], 1).to(f0.device)
59
+ # normalize f0 based on means and factor
60
+ f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
61
+ if torch.isnan(f0_norm).any():
62
+ exit(0)
63
+ return f0_norm * x_mask
64
+
65
+
66
+ def plot_data_to_numpy(x, y):
67
+ global MATPLOTLIB_FLAG
68
+ if not MATPLOTLIB_FLAG:
69
+ import matplotlib
70
+ matplotlib.use("Agg")
71
+ MATPLOTLIB_FLAG = True
72
+ mpl_logger = logging.getLogger('matplotlib')
73
+ mpl_logger.setLevel(logging.WARNING)
74
+ import matplotlib.pylab as plt
75
+ import numpy as np
76
+
77
+ fig, ax = plt.subplots(figsize=(10, 2))
78
+ plt.plot(x)
79
+ plt.plot(y)
80
+ plt.tight_layout()
81
+
82
+ fig.canvas.draw()
83
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
84
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
85
+ plt.close()
86
+ return data
87
+
88
+
89
+
90
+ def interpolate_f0(f0):
91
+ '''
92
+ 对F0进行插值处理
93
+ '''
94
+
95
+ data = np.reshape(f0, (f0.size, 1))
96
+
97
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
98
+ vuv_vector[data > 0.0] = 1.0
99
+ vuv_vector[data <= 0.0] = 0.0
100
+
101
+ ip_data = data
102
+
103
+ frame_number = data.size
104
+ last_value = 0.0
105
+ for i in range(frame_number):
106
+ if data[i] <= 0.0:
107
+ j = i + 1
108
+ for j in range(i + 1, frame_number):
109
+ if data[j] > 0.0:
110
+ break
111
+ if j < frame_number - 1:
112
+ if last_value > 0.0:
113
+ step = (data[j] - data[i - 1]) / float(j - i)
114
+ for k in range(i, j):
115
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
116
+ else:
117
+ for k in range(i, j):
118
+ ip_data[k] = data[j]
119
+ else:
120
+ for k in range(i, frame_number):
121
+ ip_data[k] = last_value
122
+ else:
123
+ ip_data[i] = data[i]
124
+ last_value = data[i]
125
+
126
+ return ip_data[:,0], vuv_vector[:,0]
127
+
128
+
129
+ def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
130
+ import parselmouth
131
+ x = wav_numpy
132
+ if p_len is None:
133
+ p_len = x.shape[0]//hop_length
134
+ else:
135
+ assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
136
+ time_step = hop_length / sampling_rate * 1000
137
+ f0_min = 50
138
+ f0_max = 1100
139
+ f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
140
+ time_step=time_step / 1000, voicing_threshold=0.6,
141
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
142
+
143
+ pad_size=(p_len - len(f0) + 1) // 2
144
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
145
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
146
+ return f0
147
+
148
+ def resize_f0(x, target_len):
149
+ source = np.array(x)
150
+ source[source<0.001] = np.nan
151
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
152
+ res = np.nan_to_num(target)
153
+ return res
154
+
155
+ def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
156
+ import pyworld
157
+ if p_len is None:
158
+ p_len = wav_numpy.shape[0]//hop_length
159
+ f0, t = pyworld.dio(
160
+ wav_numpy.astype(np.double),
161
+ fs=sampling_rate,
162
+ f0_ceil=800,
163
+ frame_period=1000 * hop_length / sampling_rate,
164
+ )
165
+ f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
166
+ for index, pitch in enumerate(f0):
167
+ f0[index] = round(pitch, 1)
168
+ return resize_f0(f0, p_len)
169
+
170
+ def f0_to_coarse(f0):
171
+ is_torch = isinstance(f0, torch.Tensor)
172
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
173
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
174
+
175
+ f0_mel[f0_mel <= 1] = 1
176
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
177
+ f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
178
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
179
+ return f0_coarse
180
+
181
+
182
+ def get_hubert_model():
183
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
184
+ print("load model(s) from {}".format(vec_path))
185
+ from fairseq import checkpoint_utils
186
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
187
+ [vec_path],
188
+ suffix="",
189
+ )
190
+ model = models[0]
191
+ model.eval()
192
+ return model
193
+
194
+ def get_hubert_content(hmodel, wav_16k_tensor):
195
+ feats = wav_16k_tensor
196
+ if feats.dim() == 2: # double channels
197
+ feats = feats.mean(-1)
198
+ assert feats.dim() == 1, feats.dim()
199
+ feats = feats.view(1, -1)
200
+ padding_mask = torch.BoolTensor(feats.shape).fill_(False)
201
+ inputs = {
202
+ "source": feats.to(wav_16k_tensor.device),
203
+ "padding_mask": padding_mask.to(wav_16k_tensor.device),
204
+ "output_layer": 9, # layer 9
205
+ }
206
+ with torch.no_grad():
207
+ logits = hmodel.extract_features(**inputs)
208
+ feats = hmodel.final_proj(logits[0])
209
+ return feats.transpose(1, 2)
210
+
211
+
212
+ def get_content(cmodel, y):
213
+ with torch.no_grad():
214
+ c = cmodel.extract_features(y.squeeze(1))[0]
215
+ c = c.transpose(1, 2)
216
+ return c
217
+
218
+
219
+
220
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
221
+ assert os.path.isfile(checkpoint_path)
222
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
223
+ iteration = checkpoint_dict['iteration']
224
+ learning_rate = checkpoint_dict['learning_rate']
225
+ if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
226
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
227
+ saved_state_dict = checkpoint_dict['model']
228
+ if hasattr(model, 'module'):
229
+ state_dict = model.module.state_dict()
230
+ else:
231
+ state_dict = model.state_dict()
232
+ new_state_dict = {}
233
+ for k, v in state_dict.items():
234
+ try:
235
+ # assert "dec" in k or "disc" in k
236
+ # print("load", k)
237
+ new_state_dict[k] = saved_state_dict[k]
238
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
239
+ except:
240
+ print("error, %s is not in the checkpoint" % k)
241
+ logger.info("%s is not in the checkpoint" % k)
242
+ new_state_dict[k] = v
243
+ if hasattr(model, 'module'):
244
+ model.module.load_state_dict(new_state_dict)
245
+ else:
246
+ model.load_state_dict(new_state_dict)
247
+ print("load ")
248
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
249
+ checkpoint_path, iteration))
250
+ return model, optimizer, learning_rate, iteration
251
+
252
+
253
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
254
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
255
+ iteration, checkpoint_path))
256
+ if hasattr(model, 'module'):
257
+ state_dict = model.module.state_dict()
258
+ else:
259
+ state_dict = model.state_dict()
260
+ torch.save({'model': state_dict,
261
+ 'iteration': iteration,
262
+ 'optimizer': optimizer.state_dict(),
263
+ 'learning_rate': learning_rate}, checkpoint_path)
264
+
265
+ def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
266
+ """Freeing up space by deleting saved ckpts
267
+
268
+ Arguments:
269
+ path_to_models -- Path to the model directory
270
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
271
+ sort_by_time -- True -> chronologically delete ckpts
272
+ False -> lexicographically delete ckpts
273
+ """
274
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
275
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
276
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
277
+ sort_key = time_key if sort_by_time else name_key
278
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
279
+ to_del = [os.path.join(path_to_models, fn) for fn in
280
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
281
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
282
+ del_routine = lambda x: [os.remove(x), del_info(x)]
283
+ rs = [del_routine(fn) for fn in to_del]
284
+
285
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
286
+ for k, v in scalars.items():
287
+ writer.add_scalar(k, v, global_step)
288
+ for k, v in histograms.items():
289
+ writer.add_histogram(k, v, global_step)
290
+ for k, v in images.items():
291
+ writer.add_image(k, v, global_step, dataformats='HWC')
292
+ for k, v in audios.items():
293
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
294
+
295
+
296
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
297
+ f_list = glob.glob(os.path.join(dir_path, regex))
298
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
299
+ x = f_list[-1]
300
+ print(x)
301
+ return x
302
+
303
+
304
+ def plot_spectrogram_to_numpy(spectrogram):
305
+ global MATPLOTLIB_FLAG
306
+ if not MATPLOTLIB_FLAG:
307
+ import matplotlib
308
+ matplotlib.use("Agg")
309
+ MATPLOTLIB_FLAG = True
310
+ mpl_logger = logging.getLogger('matplotlib')
311
+ mpl_logger.setLevel(logging.WARNING)
312
+ import matplotlib.pylab as plt
313
+ import numpy as np
314
+
315
+ fig, ax = plt.subplots(figsize=(10,2))
316
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
317
+ interpolation='none')
318
+ plt.colorbar(im, ax=ax)
319
+ plt.xlabel("Frames")
320
+ plt.ylabel("Channels")
321
+ plt.tight_layout()
322
+
323
+ fig.canvas.draw()
324
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
325
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
326
+ plt.close()
327
+ return data
328
+
329
+
330
+ def plot_alignment_to_numpy(alignment, info=None):
331
+ global MATPLOTLIB_FLAG
332
+ if not MATPLOTLIB_FLAG:
333
+ import matplotlib
334
+ matplotlib.use("Agg")
335
+ MATPLOTLIB_FLAG = True
336
+ mpl_logger = logging.getLogger('matplotlib')
337
+ mpl_logger.setLevel(logging.WARNING)
338
+ import matplotlib.pylab as plt
339
+ import numpy as np
340
+
341
+ fig, ax = plt.subplots(figsize=(6, 4))
342
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
343
+ interpolation='none')
344
+ fig.colorbar(im, ax=ax)
345
+ xlabel = 'Decoder timestep'
346
+ if info is not None:
347
+ xlabel += '\n\n' + info
348
+ plt.xlabel(xlabel)
349
+ plt.ylabel('Encoder timestep')
350
+ plt.tight_layout()
351
+
352
+ fig.canvas.draw()
353
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
354
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
355
+ plt.close()
356
+ return data
357
+
358
+
359
+ def load_wav_to_torch(full_path):
360
+ sampling_rate, data = read(full_path)
361
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
362
+
363
+
364
+ def load_filepaths_and_text(filename, split="|"):
365
+ with open(filename, encoding='utf-8') as f:
366
+ filepaths_and_text = [line.strip().split(split) for line in f]
367
+ return filepaths_and_text
368
+
369
+
370
+ def get_hparams(init=True):
371
+ parser = argparse.ArgumentParser()
372
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
373
+ help='JSON file for configuration')
374
+ parser.add_argument('-m', '--model', type=str, required=True,
375
+ help='Model name')
376
+
377
+ args = parser.parse_args()
378
+ model_dir = os.path.join("./logs", args.model)
379
+
380
+ if not os.path.exists(model_dir):
381
+ os.makedirs(model_dir)
382
+
383
+ config_path = args.config
384
+ config_save_path = os.path.join(model_dir, "config.json")
385
+ if init:
386
+ with open(config_path, "r") as f:
387
+ data = f.read()
388
+ with open(config_save_path, "w") as f:
389
+ f.write(data)
390
+ else:
391
+ with open(config_save_path, "r") as f:
392
+ data = f.read()
393
+ config = json.loads(data)
394
+
395
+ hparams = HParams(**config)
396
+ hparams.model_dir = model_dir
397
+ return hparams
398
+
399
+
400
+ def get_hparams_from_dir(model_dir):
401
+ config_save_path = os.path.join(model_dir, "config.json")
402
+ with open(config_save_path, "r") as f:
403
+ data = f.read()
404
+ config = json.loads(data)
405
+
406
+ hparams =HParams(**config)
407
+ hparams.model_dir = model_dir
408
+ return hparams
409
+
410
+
411
+ def get_hparams_from_file(config_path):
412
+ with open(config_path, "r") as f:
413
+ data = f.read()
414
+ config = json.loads(data)
415
+
416
+ hparams =HParams(**config)
417
+ return hparams
418
+
419
+
420
+ def check_git_hash(model_dir):
421
+ source_dir = os.path.dirname(os.path.realpath(__file__))
422
+ if not os.path.exists(os.path.join(source_dir, ".git")):
423
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
424
+ source_dir
425
+ ))
426
+ return
427
+
428
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
429
+
430
+ path = os.path.join(model_dir, "githash")
431
+ if os.path.exists(path):
432
+ saved_hash = open(path).read()
433
+ if saved_hash != cur_hash:
434
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
435
+ saved_hash[:8], cur_hash[:8]))
436
+ else:
437
+ open(path, "w").write(cur_hash)
438
+
439
+
440
+ def get_logger(model_dir, filename="train.log"):
441
+ global logger
442
+ logger = logging.getLogger(os.path.basename(model_dir))
443
+ logger.setLevel(logging.DEBUG)
444
+
445
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
446
+ if not os.path.exists(model_dir):
447
+ os.makedirs(model_dir)
448
+ h = logging.FileHandler(os.path.join(model_dir, filename))
449
+ h.setLevel(logging.DEBUG)
450
+ h.setFormatter(formatter)
451
+ logger.addHandler(h)
452
+ return logger
453
+
454
+
455
+ def repeat_expand_2d(content, target_len):
456
+ # content : [h, t]
457
+
458
+ src_len = content.shape[-1]
459
+ target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
460
+ temp = torch.arange(src_len+1) * target_len / src_len
461
+ current_pos = 0
462
+ for i in range(target_len):
463
+ if i < temp[current_pos+1]:
464
+ target[:, i] = content[:, current_pos]
465
+ else:
466
+ current_pos += 1
467
+ target[:, i] = content[:, current_pos]
468
+
469
+ return target
470
+
471
+
472
+ class HParams():
473
+ def __init__(self, **kwargs):
474
+ for k, v in kwargs.items():
475
+ if type(v) == dict:
476
+ v = HParams(**v)
477
+ self[k] = v
478
+
479
+ def keys(self):
480
+ return self.__dict__.keys()
481
+
482
+ def items(self):
483
+ return self.__dict__.items()
484
+
485
+ def values(self):
486
+ return self.__dict__.values()
487
+
488
+ def __len__(self):
489
+ return len(self.__dict__)
490
+
491
+ def __getitem__(self, key):
492
+ return getattr(self, key)
493
+
494
+ def __setitem__(self, key, value):
495
+ return setattr(self, key, value)
496
+
497
+ def __contains__(self, key):
498
+ return key in self.__dict__
499
+
500
+ def __repr__(self):
501
+ return self.__dict__.__repr__()
502
+
vdecoder/__init__.py ADDED
File without changes
vdecoder/hifigan/env.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+
5
+ class AttrDict(dict):
6
+ def __init__(self, *args, **kwargs):
7
+ super(AttrDict, self).__init__(*args, **kwargs)
8
+ self.__dict__ = self
9
+
10
+
11
+ def build_env(config, config_name, path):
12
+ t_path = os.path.join(path, config_name)
13
+ if config != t_path:
14
+ os.makedirs(path, exist_ok=True)
15
+ shutil.copyfile(config, os.path.join(path, config_name))
vdecoder/hifigan/models.py ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from .env import AttrDict
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ import torch.nn as nn
8
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
9
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
10
+ from .utils import init_weights, get_padding
11
+
12
+ LRELU_SLOPE = 0.1
13
+
14
+
15
+ def load_model(model_path, device='cuda'):
16
+ config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
17
+ with open(config_file) as f:
18
+ data = f.read()
19
+
20
+ global h
21
+ json_config = json.loads(data)
22
+ h = AttrDict(json_config)
23
+
24
+ generator = Generator(h).to(device)
25
+
26
+ cp_dict = torch.load(model_path)
27
+ generator.load_state_dict(cp_dict['generator'])
28
+ generator.eval()
29
+ generator.remove_weight_norm()
30
+ del cp_dict
31
+ return generator, h
32
+
33
+
34
+ class ResBlock1(torch.nn.Module):
35
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
36
+ super(ResBlock1, self).__init__()
37
+ self.h = h
38
+ self.convs1 = nn.ModuleList([
39
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
40
+ padding=get_padding(kernel_size, dilation[0]))),
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
42
+ padding=get_padding(kernel_size, dilation[1]))),
43
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
44
+ padding=get_padding(kernel_size, dilation[2])))
45
+ ])
46
+ self.convs1.apply(init_weights)
47
+
48
+ self.convs2 = nn.ModuleList([
49
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
50
+ padding=get_padding(kernel_size, 1))),
51
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
52
+ padding=get_padding(kernel_size, 1))),
53
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
54
+ padding=get_padding(kernel_size, 1)))
55
+ ])
56
+ self.convs2.apply(init_weights)
57
+
58
+ def forward(self, x):
59
+ for c1, c2 in zip(self.convs1, self.convs2):
60
+ xt = F.leaky_relu(x, LRELU_SLOPE)
61
+ xt = c1(xt)
62
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
63
+ xt = c2(xt)
64
+ x = xt + x
65
+ return x
66
+
67
+ def remove_weight_norm(self):
68
+ for l in self.convs1:
69
+ remove_weight_norm(l)
70
+ for l in self.convs2:
71
+ remove_weight_norm(l)
72
+
73
+
74
+ class ResBlock2(torch.nn.Module):
75
+ def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
76
+ super(ResBlock2, self).__init__()
77
+ self.h = h
78
+ self.convs = nn.ModuleList([
79
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
80
+ padding=get_padding(kernel_size, dilation[0]))),
81
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
82
+ padding=get_padding(kernel_size, dilation[1])))
83
+ ])
84
+ self.convs.apply(init_weights)
85
+
86
+ def forward(self, x):
87
+ for c in self.convs:
88
+ xt = F.leaky_relu(x, LRELU_SLOPE)
89
+ xt = c(xt)
90
+ x = xt + x
91
+ return x
92
+
93
+ def remove_weight_norm(self):
94
+ for l in self.convs:
95
+ remove_weight_norm(l)
96
+
97
+
98
+ def padDiff(x):
99
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
100
+
101
+ class SineGen(torch.nn.Module):
102
+ """ Definition of sine generator
103
+ SineGen(samp_rate, harmonic_num = 0,
104
+ sine_amp = 0.1, noise_std = 0.003,
105
+ voiced_threshold = 0,
106
+ flag_for_pulse=False)
107
+ samp_rate: sampling rate in Hz
108
+ harmonic_num: number of harmonic overtones (default 0)
109
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
110
+ noise_std: std of Gaussian noise (default 0.003)
111
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
112
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
113
+ Note: when flag_for_pulse is True, the first time step of a voiced
114
+ segment is always sin(np.pi) or cos(0)
115
+ """
116
+
117
+ def __init__(self, samp_rate, harmonic_num=0,
118
+ sine_amp=0.1, noise_std=0.003,
119
+ voiced_threshold=0,
120
+ flag_for_pulse=False):
121
+ super(SineGen, self).__init__()
122
+ self.sine_amp = sine_amp
123
+ self.noise_std = noise_std
124
+ self.harmonic_num = harmonic_num
125
+ self.dim = self.harmonic_num + 1
126
+ self.sampling_rate = samp_rate
127
+ self.voiced_threshold = voiced_threshold
128
+ self.flag_for_pulse = flag_for_pulse
129
+
130
+ def _f02uv(self, f0):
131
+ # generate uv signal
132
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
133
+ return uv
134
+
135
+ def _f02sine(self, f0_values):
136
+ """ f0_values: (batchsize, length, dim)
137
+ where dim indicates fundamental tone and overtones
138
+ """
139
+ # convert to F0 in rad. The interger part n can be ignored
140
+ # because 2 * np.pi * n doesn't affect phase
141
+ rad_values = (f0_values / self.sampling_rate) % 1
142
+
143
+ # initial phase noise (no noise for fundamental component)
144
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
145
+ device=f0_values.device)
146
+ rand_ini[:, 0] = 0
147
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
148
+
149
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
150
+ if not self.flag_for_pulse:
151
+ # for normal case
152
+
153
+ # To prevent torch.cumsum numerical overflow,
154
+ # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
155
+ # Buffer tmp_over_one_idx indicates the time step to add -1.
156
+ # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
157
+ tmp_over_one = torch.cumsum(rad_values, 1) % 1
158
+ tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
159
+ cumsum_shift = torch.zeros_like(rad_values)
160
+ cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
161
+
162
+ sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
163
+ * 2 * np.pi)
164
+ else:
165
+ # If necessary, make sure that the first time step of every
166
+ # voiced segments is sin(pi) or cos(0)
167
+ # This is used for pulse-train generation
168
+
169
+ # identify the last time step in unvoiced segments
170
+ uv = self._f02uv(f0_values)
171
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
172
+ uv_1[:, -1, :] = 1
173
+ u_loc = (uv < 1) * (uv_1 > 0)
174
+
175
+ # get the instantanouse phase
176
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
177
+ # different batch needs to be processed differently
178
+ for idx in range(f0_values.shape[0]):
179
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
180
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
181
+ # stores the accumulation of i.phase within
182
+ # each voiced segments
183
+ tmp_cumsum[idx, :, :] = 0
184
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
185
+
186
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
187
+ # within the previous voiced segment.
188
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
189
+
190
+ # get the sines
191
+ sines = torch.cos(i_phase * 2 * np.pi)
192
+ return sines
193
+
194
+ def forward(self, f0):
195
+ """ sine_tensor, uv = forward(f0)
196
+ input F0: tensor(batchsize=1, length, dim=1)
197
+ f0 for unvoiced steps should be 0
198
+ output sine_tensor: tensor(batchsize=1, length, dim)
199
+ output uv: tensor(batchsize=1, length, 1)
200
+ """
201
+ with torch.no_grad():
202
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
203
+ device=f0.device)
204
+ # fundamental component
205
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
206
+
207
+ # generate sine waveforms
208
+ sine_waves = self._f02sine(fn) * self.sine_amp
209
+
210
+ # generate uv signal
211
+ # uv = torch.ones(f0.shape)
212
+ # uv = uv * (f0 > self.voiced_threshold)
213
+ uv = self._f02uv(f0)
214
+
215
+ # noise: for unvoiced should be similar to sine_amp
216
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
217
+ # . for voiced regions is self.noise_std
218
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
219
+ noise = noise_amp * torch.randn_like(sine_waves)
220
+
221
+ # first: set the unvoiced part to 0 by uv
222
+ # then: additive noise
223
+ sine_waves = sine_waves * uv + noise
224
+ return sine_waves, uv, noise
225
+
226
+
227
+ class SourceModuleHnNSF(torch.nn.Module):
228
+ """ SourceModule for hn-nsf
229
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
230
+ add_noise_std=0.003, voiced_threshod=0)
231
+ sampling_rate: sampling_rate in Hz
232
+ harmonic_num: number of harmonic above F0 (default: 0)
233
+ sine_amp: amplitude of sine source signal (default: 0.1)
234
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
235
+ note that amplitude of noise in unvoiced is decided
236
+ by sine_amp
237
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
238
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
239
+ F0_sampled (batchsize, length, 1)
240
+ Sine_source (batchsize, length, 1)
241
+ noise_source (batchsize, length 1)
242
+ uv (batchsize, length, 1)
243
+ """
244
+
245
+ def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
246
+ add_noise_std=0.003, voiced_threshod=0):
247
+ super(SourceModuleHnNSF, self).__init__()
248
+
249
+ self.sine_amp = sine_amp
250
+ self.noise_std = add_noise_std
251
+
252
+ # to produce sine waveforms
253
+ self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
254
+ sine_amp, add_noise_std, voiced_threshod)
255
+
256
+ # to merge source harmonics into a single excitation
257
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
258
+ self.l_tanh = torch.nn.Tanh()
259
+
260
+ def forward(self, x):
261
+ """
262
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
263
+ F0_sampled (batchsize, length, 1)
264
+ Sine_source (batchsize, length, 1)
265
+ noise_source (batchsize, length 1)
266
+ """
267
+ # source for harmonic branch
268
+ sine_wavs, uv, _ = self.l_sin_gen(x)
269
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
270
+
271
+ # source for noise branch, in the same shape as uv
272
+ noise = torch.randn_like(uv) * self.sine_amp / 3
273
+ return sine_merge, noise, uv
274
+
275
+
276
+ class Generator(torch.nn.Module):
277
+ def __init__(self, h):
278
+ super(Generator, self).__init__()
279
+ self.h = h
280
+
281
+ self.num_kernels = len(h["resblock_kernel_sizes"])
282
+ self.num_upsamples = len(h["upsample_rates"])
283
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
284
+ self.m_source = SourceModuleHnNSF(
285
+ sampling_rate=h["sampling_rate"],
286
+ harmonic_num=8)
287
+ self.noise_convs = nn.ModuleList()
288
+ self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
289
+ resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
290
+ self.ups = nn.ModuleList()
291
+ for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
292
+ c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
293
+ self.ups.append(weight_norm(
294
+ ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
295
+ k, u, padding=(k - u) // 2)))
296
+ if i + 1 < len(h["upsample_rates"]): #
297
+ stride_f0 = np.prod(h["upsample_rates"][i + 1:])
298
+ self.noise_convs.append(Conv1d(
299
+ 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=stride_f0 // 2))
300
+ else:
301
+ self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
302
+ self.resblocks = nn.ModuleList()
303
+ for i in range(len(self.ups)):
304
+ ch = h["upsample_initial_channel"] // (2 ** (i + 1))
305
+ for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
306
+ self.resblocks.append(resblock(h, ch, k, d))
307
+
308
+ self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
309
+ self.ups.apply(init_weights)
310
+ self.conv_post.apply(init_weights)
311
+ self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
312
+
313
+ def forward(self, x, f0, g=None):
314
+ # print(1,x.shape,f0.shape,f0[:, None].shape)
315
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
316
+ # print(2,f0.shape)
317
+ har_source, noi_source, uv = self.m_source(f0)
318
+ har_source = har_source.transpose(1, 2)
319
+ x = self.conv_pre(x)
320
+ x = x + self.cond(g)
321
+ # print(124,x.shape,har_source.shape)
322
+ for i in range(self.num_upsamples):
323
+ x = F.leaky_relu(x, LRELU_SLOPE)
324
+ # print(3,x.shape)
325
+ x = self.ups[i](x)
326
+ x_source = self.noise_convs[i](har_source)
327
+ # print(4,x_source.shape,har_source.shape,x.shape)
328
+ x = x + x_source
329
+ xs = None
330
+ for j in range(self.num_kernels):
331
+ if xs is None:
332
+ xs = self.resblocks[i * self.num_kernels + j](x)
333
+ else:
334
+ xs += self.resblocks[i * self.num_kernels + j](x)
335
+ x = xs / self.num_kernels
336
+ x = F.leaky_relu(x)
337
+ x = self.conv_post(x)
338
+ x = torch.tanh(x)
339
+
340
+ return x
341
+
342
+ def remove_weight_norm(self):
343
+ print('Removing weight norm...')
344
+ for l in self.ups:
345
+ remove_weight_norm(l)
346
+ for l in self.resblocks:
347
+ l.remove_weight_norm()
348
+ remove_weight_norm(self.conv_pre)
349
+ remove_weight_norm(self.conv_post)
350
+
351
+
352
+ class DiscriminatorP(torch.nn.Module):
353
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
354
+ super(DiscriminatorP, self).__init__()
355
+ self.period = period
356
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
357
+ self.convs = nn.ModuleList([
358
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
359
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
360
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
361
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
362
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
363
+ ])
364
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
365
+
366
+ def forward(self, x):
367
+ fmap = []
368
+
369
+ # 1d to 2d
370
+ b, c, t = x.shape
371
+ if t % self.period != 0: # pad first
372
+ n_pad = self.period - (t % self.period)
373
+ x = F.pad(x, (0, n_pad), "reflect")
374
+ t = t + n_pad
375
+ x = x.view(b, c, t // self.period, self.period)
376
+
377
+ for l in self.convs:
378
+ x = l(x)
379
+ x = F.leaky_relu(x, LRELU_SLOPE)
380
+ fmap.append(x)
381
+ x = self.conv_post(x)
382
+ fmap.append(x)
383
+ x = torch.flatten(x, 1, -1)
384
+
385
+ return x, fmap
386
+
387
+
388
+ class MultiPeriodDiscriminator(torch.nn.Module):
389
+ def __init__(self, periods=None):
390
+ super(MultiPeriodDiscriminator, self).__init__()
391
+ self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
392
+ self.discriminators = nn.ModuleList()
393
+ for period in self.periods:
394
+ self.discriminators.append(DiscriminatorP(period))
395
+
396
+ def forward(self, y, y_hat):
397
+ y_d_rs = []
398
+ y_d_gs = []
399
+ fmap_rs = []
400
+ fmap_gs = []
401
+ for i, d in enumerate(self.discriminators):
402
+ y_d_r, fmap_r = d(y)
403
+ y_d_g, fmap_g = d(y_hat)
404
+ y_d_rs.append(y_d_r)
405
+ fmap_rs.append(fmap_r)
406
+ y_d_gs.append(y_d_g)
407
+ fmap_gs.append(fmap_g)
408
+
409
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
410
+
411
+
412
+ class DiscriminatorS(torch.nn.Module):
413
+ def __init__(self, use_spectral_norm=False):
414
+ super(DiscriminatorS, self).__init__()
415
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
416
+ self.convs = nn.ModuleList([
417
+ norm_f(Conv1d(1, 128, 15, 1, padding=7)),
418
+ norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
419
+ norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
420
+ norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
421
+ norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
422
+ norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
423
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
424
+ ])
425
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
426
+
427
+ def forward(self, x):
428
+ fmap = []
429
+ for l in self.convs:
430
+ x = l(x)
431
+ x = F.leaky_relu(x, LRELU_SLOPE)
432
+ fmap.append(x)
433
+ x = self.conv_post(x)
434
+ fmap.append(x)
435
+ x = torch.flatten(x, 1, -1)
436
+
437
+ return x, fmap
438
+
439
+
440
+ class MultiScaleDiscriminator(torch.nn.Module):
441
+ def __init__(self):
442
+ super(MultiScaleDiscriminator, self).__init__()
443
+ self.discriminators = nn.ModuleList([
444
+ DiscriminatorS(use_spectral_norm=True),
445
+ DiscriminatorS(),
446
+ DiscriminatorS(),
447
+ ])
448
+ self.meanpools = nn.ModuleList([
449
+ AvgPool1d(4, 2, padding=2),
450
+ AvgPool1d(4, 2, padding=2)
451
+ ])
452
+
453
+ def forward(self, y, y_hat):
454
+ y_d_rs = []
455
+ y_d_gs = []
456
+ fmap_rs = []
457
+ fmap_gs = []
458
+ for i, d in enumerate(self.discriminators):
459
+ if i != 0:
460
+ y = self.meanpools[i - 1](y)
461
+ y_hat = self.meanpools[i - 1](y_hat)
462
+ y_d_r, fmap_r = d(y)
463
+ y_d_g, fmap_g = d(y_hat)
464
+ y_d_rs.append(y_d_r)
465
+ fmap_rs.append(fmap_r)
466
+ y_d_gs.append(y_d_g)
467
+ fmap_gs.append(fmap_g)
468
+
469
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
470
+
471
+
472
+ def feature_loss(fmap_r, fmap_g):
473
+ loss = 0
474
+ for dr, dg in zip(fmap_r, fmap_g):
475
+ for rl, gl in zip(dr, dg):
476
+ loss += torch.mean(torch.abs(rl - gl))
477
+
478
+ return loss * 2
479
+
480
+
481
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
482
+ loss = 0
483
+ r_losses = []
484
+ g_losses = []
485
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
486
+ r_loss = torch.mean((1 - dr) ** 2)
487
+ g_loss = torch.mean(dg ** 2)
488
+ loss += (r_loss + g_loss)
489
+ r_losses.append(r_loss.item())
490
+ g_losses.append(g_loss.item())
491
+
492
+ return loss, r_losses, g_losses
493
+
494
+
495
+ def generator_loss(disc_outputs):
496
+ loss = 0
497
+ gen_losses = []
498
+ for dg in disc_outputs:
499
+ l = torch.mean((1 - dg) ** 2)
500
+ gen_losses.append(l)
501
+ loss += l
502
+
503
+ return loss, gen_losses
vdecoder/hifigan/nvSTFT.py ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ os.environ["LRU_CACHE_CAPACITY"] = "3"
4
+ import random
5
+ import torch
6
+ import torch.utils.data
7
+ import numpy as np
8
+ import librosa
9
+ from librosa.util import normalize
10
+ from librosa.filters import mel as librosa_mel_fn
11
+ from scipy.io.wavfile import read
12
+ import soundfile as sf
13
+
14
+ def load_wav_to_torch(full_path, target_sr=None, return_empty_on_exception=False):
15
+ sampling_rate = None
16
+ try:
17
+ data, sampling_rate = sf.read(full_path, always_2d=True)# than soundfile.
18
+ except Exception as ex:
19
+ print(f"'{full_path}' failed to load.\nException:")
20
+ print(ex)
21
+ if return_empty_on_exception:
22
+ return [], sampling_rate or target_sr or 32000
23
+ else:
24
+ raise Exception(ex)
25
+
26
+ if len(data.shape) > 1:
27
+ data = data[:, 0]
28
+ assert len(data) > 2# check duration of audio file is > 2 samples (because otherwise the slice operation was on the wrong dimension)
29
+
30
+ if np.issubdtype(data.dtype, np.integer): # if audio data is type int
31
+ max_mag = -np.iinfo(data.dtype).min # maximum magnitude = min possible value of intXX
32
+ else: # if audio data is type fp32
33
+ max_mag = max(np.amax(data), -np.amin(data))
34
+ max_mag = (2**31)+1 if max_mag > (2**15) else ((2**15)+1 if max_mag > 1.01 else 1.0) # data should be either 16-bit INT, 32-bit INT or [-1 to 1] float32
35
+
36
+ data = torch.FloatTensor(data.astype(np.float32))/max_mag
37
+
38
+ if (torch.isinf(data) | torch.isnan(data)).any() and return_empty_on_exception:# resample will crash with inf/NaN inputs. return_empty_on_exception will return empty arr instead of except
39
+ return [], sampling_rate or target_sr or 32000
40
+ if target_sr is not None and sampling_rate != target_sr:
41
+ data = torch.from_numpy(librosa.core.resample(data.numpy(), orig_sr=sampling_rate, target_sr=target_sr))
42
+ sampling_rate = target_sr
43
+
44
+ return data, sampling_rate
45
+
46
+ def dynamic_range_compression(x, C=1, clip_val=1e-5):
47
+ return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
48
+
49
+ def dynamic_range_decompression(x, C=1):
50
+ return np.exp(x) / C
51
+
52
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
53
+ return torch.log(torch.clamp(x, min=clip_val) * C)
54
+
55
+ def dynamic_range_decompression_torch(x, C=1):
56
+ return torch.exp(x) / C
57
+
58
+ class STFT():
59
+ def __init__(self, sr=22050, n_mels=80, n_fft=1024, win_size=1024, hop_length=256, fmin=20, fmax=11025, clip_val=1e-5):
60
+ self.target_sr = sr
61
+
62
+ self.n_mels = n_mels
63
+ self.n_fft = n_fft
64
+ self.win_size = win_size
65
+ self.hop_length = hop_length
66
+ self.fmin = fmin
67
+ self.fmax = fmax
68
+ self.clip_val = clip_val
69
+ self.mel_basis = {}
70
+ self.hann_window = {}
71
+
72
+ def get_mel(self, y, center=False):
73
+ sampling_rate = self.target_sr
74
+ n_mels = self.n_mels
75
+ n_fft = self.n_fft
76
+ win_size = self.win_size
77
+ hop_length = self.hop_length
78
+ fmin = self.fmin
79
+ fmax = self.fmax
80
+ clip_val = self.clip_val
81
+
82
+ if torch.min(y) < -1.:
83
+ print('min value is ', torch.min(y))
84
+ if torch.max(y) > 1.:
85
+ print('max value is ', torch.max(y))
86
+
87
+ if fmax not in self.mel_basis:
88
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
89
+ self.mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
90
+ self.hann_window[str(y.device)] = torch.hann_window(self.win_size).to(y.device)
91
+
92
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_length)/2), int((n_fft-hop_length)/2)), mode='reflect')
93
+ y = y.squeeze(1)
94
+
95
+ spec = torch.stft(y, n_fft, hop_length=hop_length, win_length=win_size, window=self.hann_window[str(y.device)],
96
+ center=center, pad_mode='reflect', normalized=False, onesided=True)
97
+ # print(111,spec)
98
+ spec = torch.sqrt(spec.pow(2).sum(-1)+(1e-9))
99
+ # print(222,spec)
100
+ spec = torch.matmul(self.mel_basis[str(fmax)+'_'+str(y.device)], spec)
101
+ # print(333,spec)
102
+ spec = dynamic_range_compression_torch(spec, clip_val=clip_val)
103
+ # print(444,spec)
104
+ return spec
105
+
106
+ def __call__(self, audiopath):
107
+ audio, sr = load_wav_to_torch(audiopath, target_sr=self.target_sr)
108
+ spect = self.get_mel(audio.unsqueeze(0)).squeeze(0)
109
+ return spect
110
+
111
+ stft = STFT()
vdecoder/hifigan/utils.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import os
3
+ import matplotlib
4
+ import torch
5
+ from torch.nn.utils import weight_norm
6
+ # matplotlib.use("Agg")
7
+ import matplotlib.pylab as plt
8
+
9
+
10
+ def plot_spectrogram(spectrogram):
11
+ fig, ax = plt.subplots(figsize=(10, 2))
12
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
13
+ interpolation='none')
14
+ plt.colorbar(im, ax=ax)
15
+
16
+ fig.canvas.draw()
17
+ plt.close()
18
+
19
+ return fig
20
+
21
+
22
+ def init_weights(m, mean=0.0, std=0.01):
23
+ classname = m.__class__.__name__
24
+ if classname.find("Conv") != -1:
25
+ m.weight.data.normal_(mean, std)
26
+
27
+
28
+ def apply_weight_norm(m):
29
+ classname = m.__class__.__name__
30
+ if classname.find("Conv") != -1:
31
+ weight_norm(m)
32
+
33
+
34
+ def get_padding(kernel_size, dilation=1):
35
+ return int((kernel_size*dilation - dilation)/2)
36
+
37
+
38
+ def load_checkpoint(filepath, device):
39
+ assert os.path.isfile(filepath)
40
+ print("Loading '{}'".format(filepath))
41
+ checkpoint_dict = torch.load(filepath, map_location=device)
42
+ print("Complete.")
43
+ return checkpoint_dict
44
+
45
+
46
+ def save_checkpoint(filepath, obj):
47
+ print("Saving checkpoint to {}".format(filepath))
48
+ torch.save(obj, filepath)
49
+ print("Complete.")
50
+
51
+
52
+ def del_old_checkpoints(cp_dir, prefix, n_models=2):
53
+ pattern = os.path.join(cp_dir, prefix + '????????')
54
+ cp_list = glob.glob(pattern) # get checkpoint paths
55
+ cp_list = sorted(cp_list)# sort by iter
56
+ if len(cp_list) > n_models: # if more than n_models models are found
57
+ for cp in cp_list[:-n_models]:# delete the oldest models other than lastest n_models
58
+ open(cp, 'w').close()# empty file contents
59
+ os.unlink(cp)# delete file (move to trash when using Colab)
60
+
61
+
62
+ def scan_checkpoint(cp_dir, prefix):
63
+ pattern = os.path.join(cp_dir, prefix + '????????')
64
+ cp_list = glob.glob(pattern)
65
+ if len(cp_list) == 0:
66
+ return None
67
+ return sorted(cp_list)[-1]
68
+