Spaces:
Running
Running
from ultralyticsplus import YOLO | |
from PIL import Image | |
import numpy as np | |
from swin import load_model, get_embeddings | |
import matplotlib.pyplot as plt | |
def load_detector(): | |
# load model | |
model = YOLO('https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-face.pt') | |
# set model parameters | |
model.overrides['conf'] = 0.25 # NMS confidence threshold | |
model.overrides['iou'] = 0.45 # NMS IoU threshold | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 50 # maximum number of detections per image | |
return model | |
def extract_faces(model, image): | |
# perform inference | |
results = model.predict(image) | |
ids = np.array(results[0].boxes.xyxy).astype(np.int32) | |
img = Image.open(image) | |
crops = [] | |
for id in ids: | |
crops.append(Image.fromarray(np.array(img)[id[1] : id[3], id[0]: id[2]])) | |
return crops, np.argmax(np.array(results[0].boxes.conf)) | |
def findCosineDistance(source_representation, test_representation): | |
a = np.matmul(np.transpose(source_representation), test_representation) | |
b = np.sum(np.multiply(source_representation, source_representation)) | |
c = np.sum(np.multiply(test_representation, test_representation)) | |
return 1 - (a / (np.sqrt(b) * np.sqrt(c))) | |
def recognition(imgs, ids, names, source_faces): | |
cols = 4 | |
rows = int(np.ceil(len(imgs)/2)) | |
img_count = 0 | |
fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(15,rows*3)) | |
for i in range(rows): | |
for j in range(cols): | |
if img_count < len(imgs): | |
if(j%2): | |
axes[i, j].set_title(f"Confidence: {1 - d[ids[img_count]][img_count]: .2f}") | |
axes[i, j].imshow(imgs[img_count]) | |
axes[i, j].set_axis_off() | |
img_count+=1 | |
else: | |
axes[i, j].set_title(f"Roll No.:{source_imgs[ids[img_count]].split('/')[-1].split('.')[0]}") | |
axes[i, j].imshow(source_faces[ids[img_count]]) | |
axes[i, j].set_axis_off() | |
plt.savefig("Recognition.jpg") |