Spaces:
Running
Running
import os | |
import faiss | |
import gradio as gr | |
from helpers import * | |
import shutil | |
from PIL import Image | |
detector = load_detector() | |
model = load_model() | |
source_imgs = [] | |
for r, _, f in os.walk(os.getcwd() + "/images"): | |
for file in f: | |
if ( | |
(".jpg" in file.lower()) | |
or (".jpeg" in file.lower()) | |
or (".png" in file.lower()) | |
): | |
exact_path = r + "/" + file | |
source_imgs.append(exact_path) | |
source_faces = [] | |
for img in source_imgs: | |
try: | |
faces, id = extract_faces(detector, img) | |
source_faces.append(faces[id]) | |
# source_faces.append(Image.open(img)) | |
except Exception as e: | |
print(f"Skipping {img}, {e}") | |
source_embeddings = get_embeddings(model, source_faces) | |
def find_names(image, minSize, minConf): | |
imgs, _ = extract_faces(detector, image) | |
ims = [] | |
for i, face in enumerate(imgs): | |
if((face.size[0] * face.size[1]) > minSize): | |
ims.append(face) | |
imgs = ims | |
embeds = get_embeddings(model, imgs) | |
d = np.zeros((len(source_embeddings), len(embeds))) | |
for i, s in enumerate(source_embeddings): | |
for j, t in enumerate(embeds): | |
d[i][j] = findCosineDistance(s, t) | |
ids = np.argmin(d, axis = 0) | |
names = [] | |
for j, i in enumerate(ids): | |
if 1 - d[i][j] > minConf: | |
names.append(source_imgs[i].split("/")[-1].split(".")[0]) | |
else: | |
names.append("Unknown") | |
recognition(imgs, ids, names, source_faces, d, source_imgs) | |
return ",".join(names), "Recognition.jpg" | |
detect = gr.Interface( | |
find_names, | |
[gr.Image(type="filepath", label="Class Photo"), gr.Number(label = "Minimum Size"), gr.Number(label = "Minimum Confidence")], | |
["text" ,gr.Image(type = "filepath", label="Matching")], | |
examples = [ | |
[os.path.join(os.path.dirname(__file__), "examples/group1.jpg"), 1000, 0.3], | |
[os.path.join(os.path.dirname(__file__), "examples/group2.jpg"), 1000, 0.3] | |
] | |
) | |
def upload_files(files): | |
if not os.path.exists(os.path.join(os.getcwd(), "temp")): | |
os.mkdir(os.path.join(os.getcwd(), "temp")) | |
for file in files: | |
shutil.move(file.name, os.path.join(os.getcwd(), "temp", file.name.split('\\')[-1])) | |
return None, "Uploaded!" | |
with gr.Blocks() as upload: | |
gr.Markdown("# Select Images to Upload and click Upload") | |
with gr.Row(): | |
input = gr.Files(file_types=[".jpg", ".jpeg", ".png"], label="Upload images") | |
# input = gr.Image(type="filepath") | |
output = gr.Textbox() | |
upload_btn = gr.Button(value="Upload") | |
upload_btn.click(upload_files, inputs=[input], outputs=[input, output]) | |
def load_image(): | |
global i, imgs | |
images = os.listdir(os.path.join(os.getcwd(), "temp")) | |
imgs = [] | |
for image in images: | |
faces, id = extract_faces(detector, os.path.join(os.getcwd(), "temp", image)) | |
# imgs.append(Image.open(os.path.join(os.getcwd(), "temp", image))) | |
imgs.append(faces[id]) | |
return imgs[0], "Loaded!" | |
def save_img(label): | |
global i, imgs | |
imgs[i].save(os.path.join(os.getcwd(), "images", f"{label}.jpg")) | |
i+=1 | |
if i < len(imgs): | |
return imgs[i], "Saved!" | |
else: | |
clear() | |
return None, "Finished!" | |
def clear(): | |
global i, imgs | |
i = 0 | |
imgs = None | |
shutil.rmtree(os.path.join(os.getcwd(), "temp")) | |
return None, None | |
i = 0 | |
imgs = None | |
with gr.Blocks() as annotate: | |
with gr.Row(): | |
input = gr.Textbox(label = "Enter Label") | |
output = gr.Image(type="pil", label="Image").style(height=400) | |
with gr.Row(): | |
next_btn = gr.Button(value="Next") | |
next_btn.click(load_image, inputs=[], outputs=[output, input]) | |
save_btn = gr.Button(value="Save") | |
save_btn.click(save_img, inputs=[input], outputs=[output, input]) | |
clear_btn = gr.Button(value="Clear") | |
clear_btn.click(clear, inputs=[], outputs=[output, input]) | |
tabbed_interface = gr.TabbedInterface( | |
[detect, upload, annotate], | |
["Attendance", "Upload", "Annotate"], | |
) | |
if __name__ == "__main__": | |
tabbed_interface.launch() | |