Spaces:
Sleeping
Sleeping
# app.py | |
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import os | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Set environment variables for Hugging Face (if needed) | |
# os.environ["HF_HOME"] = "/path/to/huggingface" | |
# os.environ["TRANSFORMERS_CACHE"] = "/path/to/transformers/cache" | |
# Streamlit app setup | |
st.title('Llama2 Chatbot Deployment on Hugging Face Spaces') | |
st.write("This chatbot is powered by the Llama2 model. Ask me anything!") | |
# User input | |
user_input = st.text_input("You:", "") | |
if user_input: | |
with st.spinner("Generating response..."): | |
try: | |
# Load tokenizer and model | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") | |
model = AutoModelForCausalLM.from_pretrained( | |
"meta-llama/Llama-2-7b-chat-hf", | |
torch_dtype=torch.float16, # Use float16 for reduced memory usage | |
device_map="auto" # Automatically map to available devices | |
) | |
# Encode the input | |
inputs = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors="pt").to(model.device) | |
# Generate a response | |
output = model.generate( | |
inputs, | |
max_length=1000, | |
temperature=0.7, | |
top_p=0.9, | |
do_sample=True, | |
eos_token_id=tokenizer.eos_token_id | |
) | |
# Decode the response | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
# Display the response | |
st.text_area("Bot:", value=response, height=200, max_chars=None, key=None) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |