import gradio as gr from miipher.dataset.preprocess_for_infer import PreprocessForInfer from miipher.lightning_module import MiipherLightningModule from lightning_vocoders.models.hifigan.xvector_lightning_module import HiFiGANXvectorLightningModule import torch import torchaudio import hydra import tempfile miipher_path = "miipher.ckpt" miipher = MiipherLightningModule.load_from_checkpoint(miipher_path,map_location='cpu') vocoder = HiFiGANXvectorLightningModule.load_from_checkpoint("vocoder_finetuned.ckpt",map_location='cpu') xvector_model = hydra.utils.instantiate(vocoder.cfg.data.xvector.model) xvector_model = xvector_model.to('cpu') preprocessor = PreprocessForInfer(miipher.cfg) @torch.inference_mode() def main(wav_path,transcript,lang_code): wav,sr =torchaudio.load(wav_path) wav = wav[0].unsqueeze(0) batch = preprocessor.process( 'test', (torch.tensor(wav),sr), word_segmented_text=transcript, lang_code=lang_code ) miipher.feature_extractor(batch) ( phone_feature, speaker_feature, degraded_ssl_feature, _, ) = miipher.feature_extractor(batch) cleaned_ssl_feature, _ = miipher(phone_feature,speaker_feature,degraded_ssl_feature) vocoder_xvector = xvector_model.encode_batch(batch['degraded_wav_16k'].view(1,-1).cpu()).squeeze(1) cleaned_wav = vocoder.generator_forward({"input_feature": cleaned_ssl_feature, "xvector": vocoder_xvector})[0].T with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as fp: torchaudio.save(fp,cleaned_wav.view(1,-1), sample_rate=22050,format='wav') return fp.name inputs = [gr.Audio(label="noisy audio",type='filepath'),gr.Textbox(label="Transcript", value="Your transcript here", max_lines=1), gr.Radio(label="Language", choices=["eng-us", "jpn"], value="eng-us")] outputs = gr.Audio(label="Output") demo = gr.Interface(fn=main, inputs=inputs, outputs=outputs) demo.launch()