# Taken from https://huggingface.co/spaces/hysts-samples/save-user-preferences # Credits to @@hysts import os import datetime import json import shutil import tempfile import uuid from pathlib import Path from typing import Any, Dict, List, Optional, Union import gradio as gr import pyarrow as pa import pyarrow.parquet as pq from gradio_client import Client from huggingface_hub import CommitScheduler from huggingface_hub.hf_api import HfApi ####################### # Parquet scheduler # # Run in scheduler.py # ####################### class ParquetScheduler(CommitScheduler): """ Usage: configure the scheduler with a repo id. Once started, you can add data to be uploaded to the Hub. 1 `.append` call will result in 1 row in your final dataset. ```py # Start scheduler >>> scheduler = ParquetScheduler(repo_id="my-parquet-dataset") # Append some data to be uploaded >>> scheduler.append({...}) >>> scheduler.append({...}) >>> scheduler.append({...}) ``` The scheduler will automatically infer the schema from the data it pushes. Optionally, you can manually set the schema yourself: ```py >>> scheduler = ParquetScheduler( ... repo_id="my-parquet-dataset", ... schema={ ... "prompt": {"_type": "Value", "dtype": "string"}, ... "negative_prompt": {"_type": "Value", "dtype": "string"}, ... "guidance_scale": {"_type": "Value", "dtype": "int64"}, ... "image": {"_type": "Image"}, ... }, ... ) See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value for the list of possible values. """ def __init__( self, *, repo_id: str, schema: Optional[Dict[str, Dict[str, str]]] = None, every: Union[int, float] = 5, path_in_repo: Optional[str] = "data", repo_type: Optional[str] = "dataset", revision: Optional[str] = None, private: bool = False, token: Optional[str] = None, allow_patterns: Union[List[str], str, None] = None, ignore_patterns: Union[List[str], str, None] = None, hf_api: Optional[HfApi] = None, ) -> None: super().__init__( repo_id=repo_id, folder_path="dummy", # not used by the scheduler every=every, path_in_repo=path_in_repo, repo_type=repo_type, revision=revision, private=private, token=token, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, hf_api=hf_api, ) self._rows: List[Dict[str, Any]] = [] self._schema = schema def append(self, row: Dict[str, Any]) -> None: """Add a new item to be uploaded.""" with self.lock: self._rows.append(row) def push_to_hub(self): # Check for new rows to push with self.lock: rows = self._rows self._rows = [] if not rows: return print(f"Got {len(rows)} item(s) to commit.") # Load images + create 'features' config for datasets library schema: Dict[str, Dict] = self._schema or {} path_to_cleanup: List[Path] = [] for row in rows: for key, value in row.items(): # Infer schema (for `datasets` library) if key not in schema: schema[key] = _infer_schema(key, value) # Load binary files if necessary if schema[key]["_type"] in ("Image", "Audio"): # It's an image or audio: we load the bytes and remember to cleanup the file file_path = Path(value) if file_path.is_file(): row[key] = { "path": file_path.name, "bytes": file_path.read_bytes(), } path_to_cleanup.append(file_path) # Complete rows if needed for row in rows: for feature in schema: if feature not in row: row[feature] = None # Export items to Arrow format table = pa.Table.from_pylist(rows) # Add metadata (used by datasets library) table = table.replace_schema_metadata( {"huggingface": json.dumps({"info": {"features": schema}})} ) # Write to parquet file archive_file = tempfile.NamedTemporaryFile(delete=False) pq.write_table(table, archive_file.name) archive_file.close() # Upload self.api.upload_file( repo_id=self.repo_id, repo_type=self.repo_type, revision=self.revision, path_in_repo=f"{uuid.uuid4()}.parquet", path_or_fileobj=archive_file.name, ) print("Commit completed.") # Cleanup os.unlink(archive_file.name) for path in path_to_cleanup: path.unlink(missing_ok=True) def _infer_schema(key: str, value: Any) -> Dict[str, str]: """ Infer schema for the `datasets` library. See https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Value. """ if "image" in key: return {"_type": "Image"} if "audio" in key: return {"_type": "Audio"} if isinstance(value, int): return {"_type": "Value", "dtype": "int64"} if isinstance(value, float): return {"_type": "Value", "dtype": "float64"} if isinstance(value, bool): return {"_type": "Value", "dtype": "bool"} if isinstance(value, bytes): return {"_type": "Value", "dtype": "binary"} # Otherwise in last resort => convert it to a string return {"_type": "Value", "dtype": "string"} ################# # Gradio app # # Run in app.py # ################# PARQUET_DATASET_DIR = Path("parquet_dataset") PARQUET_DATASET_DIR.mkdir(parents=True, exist_ok=True) scheduler = ParquetScheduler(repo_id="example-space-to-dataset-parquet") # client = Client("stabilityai/stable-diffusion") # Space is paused # client = Client("runwayml/stable-diffusion-v1-5") # Space has been deleted client = Client("black-forest-labs/FLUX.1-schnell") def generate(prompt: str) -> tuple[str, list[str]]: """Generate images on 'submit' button.""" # Generate from https://huggingface.co/spaces/stabilityai/stable-diffusion # out_dir = client.predict(prompt, "", 9, fn_index=1) # Space 'stabilityai/stable-diffusion' is paused # out_dir = client.predict(prompt, fn_index=1) # Space "runwayml/stable-diffusion-v1-5" has been deleted image_path, _ = client.predict(prompt, api_name="/infer") # Save config used to generate data with tempfile.NamedTemporaryFile( mode="w", suffix=".json", delete=False ) as config_file: json.dump( {"prompt": prompt, "negative_prompt": "", "guidance_scale": 9}, config_file ) return config_file.name, image_path def get_selected_index(evt: gr.SelectData) -> int: """Select "best" image.""" return evt.index def save_preference( config_path: str, image_path: str ) -> None: """Save preference, i.e. move images to a new folder and send paths+config to scheduler.""" save_dir = PARQUET_DATASET_DIR / f"{uuid.uuid4()}" save_dir.mkdir(parents=True, exist_ok=True) # Load config with open(config_path) as f: data = json.load(f) # Add selected item + timestamp data["selected_index"] = 0 data["timestamp"] = datetime.datetime.utcnow().isoformat() # Copy and add images for index in range(4): # fake 4 images name = f"{index:03d}" dst_path = save_dir / f"{name}{Path(image_path).suffix}" shutil.copyfile(image_path, dst_path) data[f"image_{name}"] = dst_path # Send to scheduler scheduler.append(data) def clear() -> tuple[dict, dict, dict]: """Clear all values once saved.""" return (gr.update(value=None), gr.update(value=None), gr.update(interactive=False)) def get_demo(): with gr.Group(): prompt = gr.Text(show_label=False, placeholder="Prompt") config_path = gr.Text(visible=False) gallery = gr.Gallery(show_label=False) selected_index = gr.Number(visible=False, precision=0) save_preference_button = gr.Button("Save preference", interactive=False) # Generate images on submit prompt.submit(fn=generate, inputs=prompt, outputs=[config_path, gallery],).success( fn=lambda: gr.update(interactive=True), outputs=save_preference_button, queue=False, ) # Save preference on click save_preference_button.click( fn=save_preference, inputs=[config_path, gallery], queue=False, ).then( fn=clear, outputs=[config_path, gallery, save_preference_button], queue=False, )