Wedyan2023 commited on
Commit
a9c75c3
·
verified ·
1 Parent(s): 255f60b

Create app5.py

Browse files
Files changed (1) hide show
  1. app5.py +214 -0
app5.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import streamlit as st
3
+ from openai import OpenAI
4
+ import os
5
+ from dotenv import load_dotenv
6
+ import random
7
+ os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
8
+
9
+ load_dotenv()
10
+
11
+ # Initialize the client
12
+ client = OpenAI(
13
+ base_url="https://api-inference.huggingface.co/v1",
14
+ api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
15
+ )
16
+
17
+ # Supported models
18
+ model_links = {
19
+ "Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
20
+ }
21
+
22
+ # Random dog images for error messages
23
+ random_dog = [
24
+ "0f476473-2d8b-415e-b944-483768418a95.jpg",
25
+ "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
26
+ "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
27
+ "1326984c-39b0-492c-a773-f120d747a7e2.jpg"
28
+ ]
29
+
30
+ # Reset conversation
31
+ def reset_conversation():
32
+ st.session_state.conversation = []
33
+ st.session_state.messages = []
34
+ return None
35
+
36
+ # Define the available models
37
+ models = [key for key in model_links.keys()]
38
+
39
+ # Sidebar for model selection
40
+ selected_model = st.sidebar.selectbox("Select Model", models)
41
+
42
+ # Temperature slider
43
+ temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
44
+
45
+ # Reset button
46
+ st.sidebar.button('Reset Chat', on_click=reset_conversation)
47
+
48
+ # Model description
49
+ st.sidebar.write(f"You're now chatting with **{selected_model}**")
50
+ st.sidebar.markdown("*Generated content may be inaccurate or false.*")
51
+
52
+ # Chat initialization
53
+ if "messages" not in st.session_state:
54
+ st.session_state.messages = []
55
+
56
+ # Display chat messages
57
+ for message in st.session_state.messages:
58
+ with st.chat_message(message["role"]):
59
+ st.markdown(message["content"])
60
+
61
+ # Main logic to choose between data generation and data labeling
62
+ task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
63
+
64
+ if task_choice == "Data Generation":
65
+ classification_type = st.selectbox(
66
+ "Choose Classification Type",
67
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
68
+ )
69
+
70
+ if classification_type == "Sentiment Analysis":
71
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
72
+ labels = ["Positive", "Negative", "Neutral"]
73
+ elif classification_type == "Binary Classification":
74
+ label_1 = st.text_input("Enter first class")
75
+ label_2 = st.text_input("Enter second class")
76
+ labels = [label_1, label_2]
77
+ elif classification_type == "Multi-Class Classification":
78
+ num_classes = st.slider("How many classes?", 3, 10, 3)
79
+ labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
80
+
81
+ domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
82
+ if domain == "Custom":
83
+ domain = st.text_input("Specify custom domain")
84
+
85
+ min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
86
+ max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
87
+
88
+ few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
89
+ if few_shot == "Yes":
90
+ num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
91
+ few_shot_examples = [
92
+ {"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
93
+ for i in range(num_examples)
94
+ ]
95
+ else:
96
+ few_shot_examples = []
97
+
98
+ # Ask the user how many examples they need
99
+ num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
100
+
101
+ # User prompt text field
102
+ user_prompt = st.text_area("Enter your prompt to guide example generation", "")
103
+
104
+ # System prompt generation
105
+ system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
106
+ if few_shot_examples:
107
+ system_prompt += "Use the following few-shot examples as a reference:\n"
108
+ for example in few_shot_examples:
109
+ system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
110
+ system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
111
+ system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
112
+ system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
113
+ if user_prompt:
114
+ system_prompt += f"Additional instructions: {user_prompt}\n"
115
+
116
+ st.write("System Prompt:")
117
+ st.code(system_prompt)
118
+
119
+ if st.button("Generate Examples"):
120
+ with st.spinner("Generating..."):
121
+ st.session_state.messages.append({"role": "system", "content": system_prompt})
122
+
123
+ try:
124
+ stream = client.chat.completions.create(
125
+ model=model_links[selected_model],
126
+ messages=[
127
+ {"role": m["role"], "content": m["content"]}
128
+ for m in st.session_state.messages
129
+ ],
130
+ temperature=temp_values,
131
+ stream=True,
132
+ max_tokens=3000,
133
+ )
134
+ response = st.write_stream(stream)
135
+ except Exception as e:
136
+ response = "Error during generation."
137
+ random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
138
+ st.image(random_dog_pick)
139
+ st.write(e)
140
+
141
+ st.session_state.messages.append({"role": "assistant", "content": response})
142
+
143
+ else: # Data Labeling Process
144
+ labeling_classification_type = st.selectbox(
145
+ "Choose Classification Type for Labeling",
146
+ ["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
147
+ )
148
+
149
+ # Initialize labels based on classification type
150
+ if labeling_classification_type == "Sentiment Analysis":
151
+ st.write("Sentiment Analysis: Positive, Negative, Neutral")
152
+ labeling_labels = ["Positive", "Negative", "Neutral"]
153
+ elif labeling_classification_type == "Binary Classification":
154
+ labeling_label_1 = st.text_input("Enter first class for labeling")
155
+ labeling_label_2 = st.text_input("Enter second class for labeling")
156
+ labeling_labels = [labeling_label_1, labeling_label_2]
157
+ elif labeling_classification_type == "Multi-Class Classification":
158
+ labeling_num_classes = st.slider("How many classes for labeling?", 3, 10, 3)
159
+ labeling_labels = [st.text_input(f"Labeling Class {i+1}") for i in range(labeling_num_classes)]
160
+
161
+ # Few-shot examples for labeling
162
+ labeling_few_shot = st.radio("Do you want to add few-shot examples for labeling?", ["Yes", "No"])
163
+ if labeling_few_shot == "Yes":
164
+ labeling_num_examples = st.slider("How many few-shot examples for labeling?", 1, 5, 1)
165
+ labeling_few_shot_examples = [
166
+ {"content": st.text_area(f"Labeling Example {i+1}"),
167
+ "label": st.selectbox(f"Label for labeling example {i+1}", labeling_labels)}
168
+ for i in range(labeling_num_examples)
169
+ ]
170
+ else:
171
+ labeling_few_shot_examples = []
172
+
173
+ # Input for text to classify
174
+ text_to_classify = st.text_area("Enter text to classify")
175
+
176
+ if st.button("Classify Text"):
177
+ if text_to_classify:
178
+ # Prepare the system prompt for classification
179
+ labeling_system_prompt = f"You are a professional {labeling_classification_type.lower()} expert. "
180
+ labeling_system_prompt += f"Classify the following text using these labels: {', '.join(labeling_labels)}.\n\n"
181
+
182
+ if labeling_few_shot_examples:
183
+ labeling_system_prompt += "Here are some examples for reference:\n"
184
+ for example in labeling_few_shot_examples:
185
+ labeling_system_prompt += f"Text: {example['content']}\nLabel: {example['label']}\n\n"
186
+
187
+ labeling_system_prompt += f"Text to classify: {text_to_classify}\n"
188
+ labeling_system_prompt += "Provide your classification in this format: 'Classification: [label]'\n"
189
+ labeling_system_prompt += "Also provide a brief explanation for your classification."
190
+
191
+ with st.spinner("Classifying..."):
192
+ st.session_state.messages.append({"role": "system", "content": labeling_system_prompt})
193
+
194
+ try:
195
+ stream = client.chat.completions.create(
196
+ model=model_links[selected_model],
197
+ messages=[
198
+ {"role": m["role"], "content": m["content"]}
199
+ for m in st.session_state.messages
200
+ ],
201
+ temperature=temp_values,
202
+ stream=True,
203
+ max_tokens=1000,
204
+ )
205
+ response = st.write_stream(stream)
206
+ except Exception as e:
207
+ response = "Error during classification."
208
+ random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
209
+ st.image(random_dog_pick)
210
+ st.write(e)
211
+
212
+ st.session_state.messages.append({"role": "assistant", "content": response})
213
+ else:
214
+ st.warning("Please enter text to classify.")