Create app5.py
Browse files
app5.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import streamlit as st
|
3 |
+
from openai import OpenAI
|
4 |
+
import os
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import random
|
7 |
+
os.environ["BROWSER_GATHERUSAGESTATS"] = "false"
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
# Initialize the client
|
12 |
+
client = OpenAI(
|
13 |
+
base_url="https://api-inference.huggingface.co/v1",
|
14 |
+
api_key=os.environ.get('TOKEN2') # Add your Huggingface token here
|
15 |
+
)
|
16 |
+
|
17 |
+
# Supported models
|
18 |
+
model_links = {
|
19 |
+
"Meta-Llama-3-8B": "meta-llama/Meta-Llama-3-8B-Instruct"
|
20 |
+
}
|
21 |
+
|
22 |
+
# Random dog images for error messages
|
23 |
+
random_dog = [
|
24 |
+
"0f476473-2d8b-415e-b944-483768418a95.jpg",
|
25 |
+
"1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
|
26 |
+
"526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
|
27 |
+
"1326984c-39b0-492c-a773-f120d747a7e2.jpg"
|
28 |
+
]
|
29 |
+
|
30 |
+
# Reset conversation
|
31 |
+
def reset_conversation():
|
32 |
+
st.session_state.conversation = []
|
33 |
+
st.session_state.messages = []
|
34 |
+
return None
|
35 |
+
|
36 |
+
# Define the available models
|
37 |
+
models = [key for key in model_links.keys()]
|
38 |
+
|
39 |
+
# Sidebar for model selection
|
40 |
+
selected_model = st.sidebar.selectbox("Select Model", models)
|
41 |
+
|
42 |
+
# Temperature slider
|
43 |
+
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, 0.5)
|
44 |
+
|
45 |
+
# Reset button
|
46 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
47 |
+
|
48 |
+
# Model description
|
49 |
+
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
50 |
+
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
51 |
+
|
52 |
+
# Chat initialization
|
53 |
+
if "messages" not in st.session_state:
|
54 |
+
st.session_state.messages = []
|
55 |
+
|
56 |
+
# Display chat messages
|
57 |
+
for message in st.session_state.messages:
|
58 |
+
with st.chat_message(message["role"]):
|
59 |
+
st.markdown(message["content"])
|
60 |
+
|
61 |
+
# Main logic to choose between data generation and data labeling
|
62 |
+
task_choice = st.selectbox("Choose Task", ["Data Generation", "Data Labeling"])
|
63 |
+
|
64 |
+
if task_choice == "Data Generation":
|
65 |
+
classification_type = st.selectbox(
|
66 |
+
"Choose Classification Type",
|
67 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
68 |
+
)
|
69 |
+
|
70 |
+
if classification_type == "Sentiment Analysis":
|
71 |
+
st.write("Sentiment Analysis: Positive, Negative, Neutral")
|
72 |
+
labels = ["Positive", "Negative", "Neutral"]
|
73 |
+
elif classification_type == "Binary Classification":
|
74 |
+
label_1 = st.text_input("Enter first class")
|
75 |
+
label_2 = st.text_input("Enter second class")
|
76 |
+
labels = [label_1, label_2]
|
77 |
+
elif classification_type == "Multi-Class Classification":
|
78 |
+
num_classes = st.slider("How many classes?", 3, 10, 3)
|
79 |
+
labels = [st.text_input(f"Class {i+1}") for i in range(num_classes)]
|
80 |
+
|
81 |
+
domain = st.selectbox("Choose Domain", ["Restaurant reviews", "E-commerce reviews", "Custom"])
|
82 |
+
if domain == "Custom":
|
83 |
+
domain = st.text_input("Specify custom domain")
|
84 |
+
|
85 |
+
min_words = st.number_input("Minimum words per example", min_value=10, max_value=90, value=10)
|
86 |
+
max_words = st.number_input("Maximum words per example", min_value=10, max_value=90, value=90)
|
87 |
+
|
88 |
+
few_shot = st.radio("Do you want to use few-shot examples?", ["Yes", "No"])
|
89 |
+
if few_shot == "Yes":
|
90 |
+
num_examples = st.slider("How many few-shot examples?", 1, 5, 1)
|
91 |
+
few_shot_examples = [
|
92 |
+
{"content": st.text_area(f"Example {i+1}"), "label": st.selectbox(f"Label for example {i+1}", labels)}
|
93 |
+
for i in range(num_examples)
|
94 |
+
]
|
95 |
+
else:
|
96 |
+
few_shot_examples = []
|
97 |
+
|
98 |
+
# Ask the user how many examples they need
|
99 |
+
num_to_generate = st.number_input("How many examples to generate?", min_value=1, max_value=100, value=10)
|
100 |
+
|
101 |
+
# User prompt text field
|
102 |
+
user_prompt = st.text_area("Enter your prompt to guide example generation", "")
|
103 |
+
|
104 |
+
# System prompt generation
|
105 |
+
system_prompt = f"You are a professional {classification_type.lower()} expert. Your role is to generate data for {domain}.\n\n"
|
106 |
+
if few_shot_examples:
|
107 |
+
system_prompt += "Use the following few-shot examples as a reference:\n"
|
108 |
+
for example in few_shot_examples:
|
109 |
+
system_prompt += f"Example: {example['content']} \n Label: {example['label']}\n"
|
110 |
+
system_prompt += f"Generate {num_to_generate} unique examples with diverse phrasing.\n"
|
111 |
+
system_prompt += f"Each example should have between {min_words} and {max_words} words.\n"
|
112 |
+
system_prompt += f"Use the labels specified: {', '.join(labels)}.\n"
|
113 |
+
if user_prompt:
|
114 |
+
system_prompt += f"Additional instructions: {user_prompt}\n"
|
115 |
+
|
116 |
+
st.write("System Prompt:")
|
117 |
+
st.code(system_prompt)
|
118 |
+
|
119 |
+
if st.button("Generate Examples"):
|
120 |
+
with st.spinner("Generating..."):
|
121 |
+
st.session_state.messages.append({"role": "system", "content": system_prompt})
|
122 |
+
|
123 |
+
try:
|
124 |
+
stream = client.chat.completions.create(
|
125 |
+
model=model_links[selected_model],
|
126 |
+
messages=[
|
127 |
+
{"role": m["role"], "content": m["content"]}
|
128 |
+
for m in st.session_state.messages
|
129 |
+
],
|
130 |
+
temperature=temp_values,
|
131 |
+
stream=True,
|
132 |
+
max_tokens=3000,
|
133 |
+
)
|
134 |
+
response = st.write_stream(stream)
|
135 |
+
except Exception as e:
|
136 |
+
response = "Error during generation."
|
137 |
+
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
|
138 |
+
st.image(random_dog_pick)
|
139 |
+
st.write(e)
|
140 |
+
|
141 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
142 |
+
|
143 |
+
else: # Data Labeling Process
|
144 |
+
labeling_classification_type = st.selectbox(
|
145 |
+
"Choose Classification Type for Labeling",
|
146 |
+
["Sentiment Analysis", "Binary Classification", "Multi-Class Classification"]
|
147 |
+
)
|
148 |
+
|
149 |
+
# Initialize labels based on classification type
|
150 |
+
if labeling_classification_type == "Sentiment Analysis":
|
151 |
+
st.write("Sentiment Analysis: Positive, Negative, Neutral")
|
152 |
+
labeling_labels = ["Positive", "Negative", "Neutral"]
|
153 |
+
elif labeling_classification_type == "Binary Classification":
|
154 |
+
labeling_label_1 = st.text_input("Enter first class for labeling")
|
155 |
+
labeling_label_2 = st.text_input("Enter second class for labeling")
|
156 |
+
labeling_labels = [labeling_label_1, labeling_label_2]
|
157 |
+
elif labeling_classification_type == "Multi-Class Classification":
|
158 |
+
labeling_num_classes = st.slider("How many classes for labeling?", 3, 10, 3)
|
159 |
+
labeling_labels = [st.text_input(f"Labeling Class {i+1}") for i in range(labeling_num_classes)]
|
160 |
+
|
161 |
+
# Few-shot examples for labeling
|
162 |
+
labeling_few_shot = st.radio("Do you want to add few-shot examples for labeling?", ["Yes", "No"])
|
163 |
+
if labeling_few_shot == "Yes":
|
164 |
+
labeling_num_examples = st.slider("How many few-shot examples for labeling?", 1, 5, 1)
|
165 |
+
labeling_few_shot_examples = [
|
166 |
+
{"content": st.text_area(f"Labeling Example {i+1}"),
|
167 |
+
"label": st.selectbox(f"Label for labeling example {i+1}", labeling_labels)}
|
168 |
+
for i in range(labeling_num_examples)
|
169 |
+
]
|
170 |
+
else:
|
171 |
+
labeling_few_shot_examples = []
|
172 |
+
|
173 |
+
# Input for text to classify
|
174 |
+
text_to_classify = st.text_area("Enter text to classify")
|
175 |
+
|
176 |
+
if st.button("Classify Text"):
|
177 |
+
if text_to_classify:
|
178 |
+
# Prepare the system prompt for classification
|
179 |
+
labeling_system_prompt = f"You are a professional {labeling_classification_type.lower()} expert. "
|
180 |
+
labeling_system_prompt += f"Classify the following text using these labels: {', '.join(labeling_labels)}.\n\n"
|
181 |
+
|
182 |
+
if labeling_few_shot_examples:
|
183 |
+
labeling_system_prompt += "Here are some examples for reference:\n"
|
184 |
+
for example in labeling_few_shot_examples:
|
185 |
+
labeling_system_prompt += f"Text: {example['content']}\nLabel: {example['label']}\n\n"
|
186 |
+
|
187 |
+
labeling_system_prompt += f"Text to classify: {text_to_classify}\n"
|
188 |
+
labeling_system_prompt += "Provide your classification in this format: 'Classification: [label]'\n"
|
189 |
+
labeling_system_prompt += "Also provide a brief explanation for your classification."
|
190 |
+
|
191 |
+
with st.spinner("Classifying..."):
|
192 |
+
st.session_state.messages.append({"role": "system", "content": labeling_system_prompt})
|
193 |
+
|
194 |
+
try:
|
195 |
+
stream = client.chat.completions.create(
|
196 |
+
model=model_links[selected_model],
|
197 |
+
messages=[
|
198 |
+
{"role": m["role"], "content": m["content"]}
|
199 |
+
for m in st.session_state.messages
|
200 |
+
],
|
201 |
+
temperature=temp_values,
|
202 |
+
stream=True,
|
203 |
+
max_tokens=1000,
|
204 |
+
)
|
205 |
+
response = st.write_stream(stream)
|
206 |
+
except Exception as e:
|
207 |
+
response = "Error during classification."
|
208 |
+
random_dog_pick = 'https://random.dog/' + random_dog[np.random.randint(len(random_dog))]
|
209 |
+
st.image(random_dog_pick)
|
210 |
+
st.write(e)
|
211 |
+
|
212 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
213 |
+
else:
|
214 |
+
st.warning("Please enter text to classify.")
|