File size: 6,936 Bytes
4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 4596869 dacd607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import pandas as pd
import arxiv
import requests
from pinecone import Pinecone, ServerlessSpec
import logging
import os
import asyncio
from dotenv import load_dotenv
load_dotenv(".env")
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
def get_zotero_ids(api_key, library_id, tag):
base_url = "https://api.zotero.org"
suffix = "/users/" + library_id + "/items?tag=" + tag
header = {"Authorization": "Bearer " + api_key}
request = requests.get(base_url + suffix, headers=header)
return [data["data"]["archiveID"].replace("arXiv:", "") for data in request.json()]
def get_arxiv_papers(ids=None, category=None, comment=None):
logging.getLogger("arxiv").setLevel(logging.WARNING)
client = arxiv.Client()
if category is None:
search = arxiv.Search(
id_list=ids,
max_results=len(ids),
)
else:
if comment is None:
custom_query = f"cat:{category}"
else:
custom_query = f"cat:{category} AND co:{comment}"
search = arxiv.Search(
query=custom_query,
max_results=15,
sort_by=arxiv.SortCriterion.SubmittedDate,
)
if ids is None and category is None:
raise ValueError("not a valid query")
df = pd.DataFrame(
{
"Title": [result.title for result in client.results(search)],
"Abstract": [
result.summary.replace("\n", " ") for result in client.results(search)
],
"Date": [
result.published.date().strftime("%Y-%m-%d")
for result in client.results(search)
],
"id": [result.entry_id for result in client.results(search)],
}
)
if ids:
df.to_csv("arxiv-scrape.csv", index=False)
return df
def get_hf_embeddings(api_key, df):
title_abs = [
title + "[SEP]" + abstract
for title, abstract in zip(df["Title"], df["Abstract"])
]
API_URL = "https://api-inference.huggingface.co/models/malteos/scincl"
headers = {"Authorization": f"Bearer {api_key}"}
response = requests.post(
API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": False}
)
print(str(response.status_code) + "This part needs an update, causing KeyError 0")
if response.status_code == 503:
response = asyncio.run(
asyncio.to_thread(
requests.post,
API_URL,
headers=headers,
json={"inputs": title_abs, "wait_for_model": True},
)
)
# response = requests.post(
# API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": True}
# )
embeddings = response.json()
return embeddings, len(embeddings[0])
def upload_to_pinecone(api_key, index, namespace, embeddings, dim, df):
input = [
{"id": df["id"][i], "values": embeddings[i]} for i in range(len(embeddings))
]
pc = Pinecone(api_key=api_key)
if index in pc.list_indexes().names():
while True:
logging.warning(f"Index name : {index} already exists.")
return f"Index name : {index} already exists"
pc.create_index(
name=index,
dimension=dim,
metric="cosine",
spec=ServerlessSpec(cloud="aws", region="us-east-1"),
)
index = pc.Index(index)
return index.upsert(vectors=input, namespace=namespace)
def main():
script_dir = os.path.dirname(os.path.abspath(__file__))
os.chdir(script_dir)
logging.basicConfig(
filename="logs/logfile.log",
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
)
logging.getLogger("arxiv").setLevel(logging.WARNING)
logging.info("Project Initialization Script Started (Serverless)")
ids = get_zotero_ids(
os.getenv("ZOTERO_API_KEY"),
os.getenv("ZOTERO_LIBRARY_ID"),
os.getenv("ZOTERO_TAG"),
)
print(ids)
df = get_arxiv_papers(ids=ids)
embeddings, dim = get_hf_embeddings(os.getenv("HF_API_KEY"), df)
feedback = upload_to_pinecone(
api_key=os.getenv("PINECONE_API_KEY"),
index=os.getenv("INDEX_NAME"),
namespace=os.getenv("NAMESPACE_NAME"),
embeddings=embeddings,
dim=dim,
df=df,
)
logging.info(feedback)
if feedback is dict:
return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {os.getenv('NAMESPACE_NAME')} namespace."
else:
return feedback
def get_new_papers(df):
df_main = pd.read_csv("arxiv-scrape.csv")
df.reset_index(inplace=True)
df.drop(columns=["index"], inplace=True)
union_df = df.merge(df_main, how="left", indicator=True)
df = union_df[union_df["_merge"] == "left_only"].drop(columns=["_merge"])
if df.empty:
return "No New Papers Found"
else:
df_main = pd.concat([df_main, df], ignore_index=True)
df_main.drop_duplicates(inplace=True)
df_main.to_csv("arxiv-scrape.csv", index=False)
return df
def recommend_papers(api_key, index, namespace, embeddings, df, threshold):
pc = Pinecone(api_key=api_key)
if index in pc.list_indexes().names():
index = pc.Index(index)
else:
raise ValueError(f"{index} doesnt exist. Project isnt initialized properly")
results = []
score_threshold = threshold
for i, embedding in enumerate(embeddings):
query = embedding
result = index.query(
namespace=namespace, vector=query, top_k=3, include_values=False
)
sum_score = sum(match["score"] for match in result["matches"])
if sum_score > score_threshold:
results.append(
f"Paper-URL : [{df['id'][i]}]({df['id'][i]}) with score: {sum_score / 3} <br />"
)
if results:
return "\n".join(results)
else:
return "No Interesting Paper"
def recs(threshold):
logging.info("Weekly Script Started (Serverless)")
df = get_arxiv_papers(
category=os.getenv("ARXIV_CATEGORY_NAME"),
comment=os.getenv("ARXIV_COMMENT_QUERY"),
)
df = get_new_papers(df)
if not isinstance(df, pd.DataFrame):
return df
embeddings, _ = get_hf_embeddings(os.getenv("HF_API_KEY"), df)
results = recommend_papers(
os.getenv("PINECONE_API_KEY"),
os.getenv("INDEX_NAME"),
os.getenv("NAMESPACE_NAME"),
embeddings,
df,
threshold,
)
return results
if __name__ == "__main__":
choice = int(input("1. Initialize\n2. Recommend Papers\n"))
if choice == 1:
print(main())
elif choice == 2:
threshold = float(input("Enter Similarity Threshold"))
print(recs(threshold))
else:
raise ValueError("Invalid Input")
|