import logging import os import gradio as gr import pandas as pd from pinecone import Pinecone from utils import get_zotero_ids, get_arxiv_papers, get_hf_embeddings, upload_to_pinecone, get_new_papers, recommend_papers HF_API_KEY = os.getenv('HF_API_KEY') PINECONE_API_KEY = os.getenv('PINECONE_API_KEY') INDEX_NAME = os.getenv('INDEX_NAME') NAMESPACE_NAME = os.getenv('NAMESPACE_NAME') script_dir = os.path.dirname(os.path.abspath(__file__)) os.chdir(script_dir) def category_radio(cat): if cat == 'Computer Vision and Pattern Recognition': return 'cs.CV' elif cat == 'Computation and Language': return 'cs.CL' elif cat == 'Artificial Intelligence': return 'cs.AI' elif cat == 'Robotics': return 'cs.RO' def comment_radio(com): if com == 'None': return None else: return com def reset_project(): file_path = 'arxiv-scrape.csv' if os.path.exists(file_path): os.remove(file_path) logging.info(f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers.") api_key = os.getenv('PINECONE_API_KEY') index = os.getenv('INDEX_NAME') pc = Pinecone(api_key = api_key) if index in pc.list_indexes().names(): pc.delete_index(index) logging.info(f"{index} index has been deleted from the vectordb. Delete reset_project() if you want to persist recommended papers.") return f"{file_path} has been deleted.
{index} index has been deleted from the vectordb.
" def reset_csv(): file_path = 'arxiv-scrape.csv' if os.path.exists(file_path): os.remove(file_path) logging.info(f"{file_path} has been deleted. Delete reset_project() if you want to persist recommended papers.") with gr.Blocks() as demo: zotero_api_key = gr.Textbox(label="Zotero API Key") zotero_library_id = gr.Textbox(label="Zotero Library ID") zotero_tag = gr.Textbox(label="Zotero Tag") arxiv_category_name = gr.State([]) radio_arxiv_category_name = gr.Radio(['Computer Vision and Pattern Recognition', 'Computation and Language', 'Artificial Intelligence', 'Robotics'], label="ArXiv Category Query") radio_arxiv_category_name.change(fn = category_radio, inputs= radio_arxiv_category_name, outputs= arxiv_category_name) arxiv_comment_query = gr.State([]) radio_arxiv_comment_query = gr.Radio(['CVPR', 'ACL', 'TACL', 'JAIR', 'IJRR', 'None'], label="ArXiv Comment Query") radio_arxiv_comment_query.change(fn = comment_radio, inputs= radio_arxiv_comment_query, outputs= arxiv_comment_query) threshold = gr.Slider(minimum= 0.70, maximum= 0.99, label="Similarity Score Threshold") init_output = gr.Textbox(label="Project Initialization Result") rec_output = gr.Markdown(label = "Recommended Papers") reset_output = gr.Markdown(label = "Reset Declaration") init_btn = gr.Button("Initialize") rec_btn = gr.Button("Recommend") reset_btn = gr.Button("Reset") timer = gr.Timer(value=600) timer.tick(reset_project) reset_btn.click(fn = reset_project, inputs= [], outputs= [reset_output]) @init_btn.click(inputs= [zotero_api_key, zotero_library_id, zotero_tag], outputs= [init_output]) def init(zotero_api_key, zotero_library_id, zotero_tag, hf_api_key = HF_API_KEY, pinecone_api_key = PINECONE_API_KEY, index_name = INDEX_NAME, namespace_name = NAMESPACE_NAME): logging.basicConfig(filename= 'logfile.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logging.info("Project Initialization Script Started (Serverless)") ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag) df = get_arxiv_papers(ids) embeddings, dim = get_hf_embeddings(hf_api_key, df) feedback = upload_to_pinecone(pinecone_api_key, index_name, namespace_name, embeddings, dim, df) logging.info(feedback) if feedback is dict: return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace." else : return feedback @rec_btn.click(inputs= [arxiv_category_name, arxiv_comment_query, threshold], outputs= [rec_output]) def recs(arxiv_category_name, arxiv_comment_query, threshold, hf_api_key = HF_API_KEY, pinecone_api_key = PINECONE_API_KEY, index_name = INDEX_NAME, namespace_name = NAMESPACE_NAME): logging.info("Weekly Script Started (Serverless)") df = get_arxiv_papers(category= arxiv_category_name, comment= arxiv_comment_query) df = get_new_papers(df) if not isinstance(df, pd.DataFrame): return df embeddings, _ = get_hf_embeddings(hf_api_key, df) results = recommend_papers(pinecone_api_key, index_name, namespace_name, embeddings, df, threshold) return results demo.launch(share = True)