import gradio as gr from transformers import BlipProcessor, BlipForConditionalGeneration from PIL import Image import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BlipForConditionalGeneration.from_pretrained("./").to(device) processor = BlipProcessor.from_pretrained("./") def generate_caption(image): inputs = processor(images=image, return_tensors="pt").to(device) with torch.no_grad(): generated_ids = model.generate(**inputs) caption = processor.decode(generated_ids[0], skip_special_tokens=True) return caption interface = gr.Interface(fn=generate_caption, inputs="image", outputs="text") interface.launch()