File size: 3,706 Bytes
5416372
a2e6c05
 
d81ed7c
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
 
 
 
3b39700
a2e6c05
 
3b39700
a2e6c05
 
b23a519
a2e6c05
d81ed7c
 
1a382ff
d81ed7c
 
 
 
 
 
 
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
d81ed7c
a2e6c05
 
 
 
 
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
 
d81ed7c
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
d81ed7c
 
 
 
a2e6c05
d81ed7c
 
 
 
 
 
 
 
a2e6c05
d81ed7c
b23a519
 
 
72fd759
 
3b39700
 
b23a519
a2e6c05
 
 
 
 
 
b93337b
d81ed7c
 
 
a2e6c05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download

subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)

hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf",  local_dir = "./models")
hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-9b-GGUF", filename="dolphin-2.9.1-yi-1.5-9b-f32.gguf",  local_dir = "./models")

css = """
.message-row {
    justify-content: space-evenly !important;
}
.message-bubble-border {
    border-radius: 6px !important;
    border-color: #21293b !important;
}
.user {
    background: #1e293b !important;
}
.assistant, .pending {
    background: #0f172a !important;
}
"""

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    model,
):
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent
    from llama_cpp_agent import MessagesFormatterType
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles

    llm = Llama(
        model_path=f"models/{model}",
        n_gpu_layers=81,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt="You are a helpful assistant.",
        predefined_messages_formatter_type=MessagesFormatterType.CHATML,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.max_tokens = max_tokens
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }

        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
        gr.Dropdown(['dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf', 'dolphin-2.9.1-yi-1.5-9b-f32.gguf'], value="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", label="Model"),
    ],
    theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#0f172a",
        block_background_fill_dark="#0f172a",
        block_title_background_fill_dark="#0c1425",
        input_background_fill_dark="#0c1425",
        button_secondary_background_fill_dark="#0c1425",
        border_color_primary_dark="#21293b",
        background_fill_secondary_dark="#0f172a"
    ),
    css=css,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    description="Cognitive Computation: 🐬 Chat multi llm"
)

if __name__ == "__main__":
    demo.launch()