File size: 4,741 Bytes
5416372
a2e6c05
 
d81ed7c
a2e6c05
d81ed7c
a2e6c05
 
 
 
a65de5c
fd701cd
 
a2e6c05
 
 
 
 
 
 
5fe2c9a
 
3b39700
a2e6c05
5fe2c9a
63ba25e
a2e6c05
e976361
63ba25e
a2e6c05
d81ed7c
 
1a382ff
d81ed7c
 
 
 
 
 
e976361
 
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
0a910e6
 
 
a2e6c05
 
e976361
 
a2e6c05
e976361
4993069
a2e6c05
 
d81ed7c
a2e6c05
 
776563f
a2e6c05
 
 
 
 
e976361
 
 
a2e6c05
e976361
a2e6c05
d81ed7c
a2e6c05
d81ed7c
a2e6c05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81ed7c
 
 
 
e976361
d81ed7c
 
 
 
 
 
e976361
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81ed7c
3cae82a
d81ed7c
b23a519
 
 
88a7fc3
18e5a55
72fd759
18e5a55
3b39700
014d21e
 
a2e6c05
 
 
 
 
 
d214eaa
d81ed7c
 
 
a2e6c05
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import spaces
import json
import subprocess
import gradio as gr
from huggingface_hub import hf_hub_download

subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True)
subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True)

hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf",  local_dir = "./models")
hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-70b-GGUF", filename="dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf",  local_dir = "./models")
# hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-9b-GGUF", filename="dolphin-2.9.1-yi-1.5-9b-f32.gguf",  local_dir = "./models")
# hf_hub_download(repo_id="crusoeai/dolphin-2.9.1-llama-3-8b-GGUF", filename="dolphin-2.9.1-llama-3-8b.Q6_K.gguf",  local_dir = "./models")

css = """
.message-row {
    justify-content: space-evenly !important;
}
.message-bubble-border {
    border-radius: 6px !important;
}
.dark.message-bubble-border {
    border-color: #21293b !important;
}
.dark.user {
    background: #0a1120 !important;
}
.dark.assistant {
    background: transparent !important;
}
"""

@spaces.GPU(duration=120)
def respond(
    message,
    history: list[tuple[str, str]],
    max_tokens,
    temperature,
    top_p,
    top_k,
    repeat_penalty,
    model,
):
    from llama_cpp import Llama
    from llama_cpp_agent import LlamaCppAgent
    from llama_cpp_agent import MessagesFormatterType
    from llama_cpp_agent.providers import LlamaCppPythonProvider
    from llama_cpp_agent.chat_history import BasicChatHistory
    from llama_cpp_agent.chat_history.messages import Roles
    print(message)
    print(history)
    
    llm = Llama(
        model_path=f"models/{model}",
        flash_attn=True,
        n_threads=40,
        n_gpu_layers=81,
        n_batch=1024,
        n_ctx=8192,
    )
    provider = LlamaCppPythonProvider(llm)

    agent = LlamaCppAgent(
        provider,
        system_prompt="You are Dolphin an AI assistant that helps humanity.",
        predefined_messages_formatter_type=MessagesFormatterType.CHATML,
        debug_output=True
    )
    
    settings = provider.get_provider_default_settings()
    settings.temperature = temperature
    settings.top_k = top_k
    settings.top_p = top_p
    settings.max_tokens = max_tokens
    settings.repeat_penalty = repeat_penalty
    settings.stream = True

    messages = BasicChatHistory()

    for msn in history:
        user = {
            'role': Roles.user,
            'content': msn[0]
        }
        assistant = {
            'role': Roles.assistant,
            'content': msn[1]
        }
        messages.add_message(user)
        messages.add_message(assistant)
    
    stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False)
    
    outputs = ""
    for output in stream:
        outputs += output
        yield outputs

demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p",
        ),
        gr.Slider(
            minimum=0,
            maximum=100,
            value=40,
            step=1,
            label="Top-k",
        ),
        gr.Slider(
            minimum=0.0,
            maximum=2.0,
            value=1.1,
            step=0.1,
            label="Repetition penalty",
        ),
        gr.Dropdown(['dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf', 'dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf'], value="dolphin-2.9.1-llama-3-70b.Q3_K_M.gguf", label="Model"),
    ],
    theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set(
        body_background_fill_dark="#0f172a",
        block_background_fill_dark="#0f172a",
        block_border_width="1px",
        block_title_background_fill_dark="#070d1b",
        input_background_fill_dark="#0c1425",
        button_secondary_background_fill_dark="#070d1b",
        border_color_primary_dark="#21293b",
        background_fill_secondary_dark="#0f172a",
        color_accent_soft_dark="transparent"
    ),
    css=css,
    retry_btn="Retry",
    undo_btn="Undo",
    clear_btn="Clear",
    submit_btn="Send",
    description="Cognitive Computation: Chat Dolphin 🐬 2.9.1-llama-3-70b & 2.9.1-yi-1.5-34b"
)

if __name__ == "__main__":
    demo.launch()