import spaces import json import subprocess import gradio as gr from huggingface_hub import hf_hub_download subprocess.run('pip install llama-cpp-python==0.2.75 --extra-index-url https://abetlen.github.io/llama-cpp-python/whl/cu124', shell=True) subprocess.run('pip install llama-cpp-agent==0.2.10', shell=True) hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-34b-GGUF", filename="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", local_dir = "./models") hf_hub_download(repo_id="bartowski/dolphin-2.9.1-yi-1.5-9b-GGUF", filename="dolphin-2.9.1-yi-1.5-9b-f32.gguf", local_dir = "./models") css = """ .message-row { justify-content: space-evenly !important; } .message-bubble-border { border-radius: 6px !important; border-color: #21293b !important; } .user { background: #1e293b !important; } .assistant, .pending { background: #0f172a !important; } """ @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, model, ): from llama_cpp import Llama from llama_cpp_agent import LlamaCppAgent from llama_cpp_agent import MessagesFormatterType from llama_cpp_agent.providers import LlamaCppPythonProvider from llama_cpp_agent.chat_history import BasicChatHistory from llama_cpp_agent.chat_history.messages import Roles llm = Llama( model_path=f"models/{model}", n_gpu_layers=81, ) provider = LlamaCppPythonProvider(llm) agent = LlamaCppAgent( provider, system_prompt="You are a helpful assistant.", predefined_messages_formatter_type=MessagesFormatterType.CHATML, debug_output=True ) settings = provider.get_provider_default_settings() settings.max_tokens = max_tokens settings.stream = True messages = BasicChatHistory() for msn in history: user = { 'role': Roles.user, 'content': msn[0] } assistant = { 'role': Roles.assistant, 'content': msn[1] } messages.add_message(user) messages.add_message(assistant) stream = agent.get_chat_response(message, llm_sampling_settings=settings, chat_history=messages, returns_streaming_generator=True, print_output=False) outputs = "" for output in stream: outputs += output yield outputs demo = gr.ChatInterface( respond, additional_inputs=[ gr.Slider(minimum=1, maximum=8192, value=8192, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Dropdown(['dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf', 'dolphin-2.9.1-yi-1.5-9b-f32.gguf'], value="dolphin-2.9.1-yi-1.5-34b-Q6_K.gguf", label="Model"), ], theme=gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="gray",font=[gr.themes.GoogleFont("Exo"), "ui-sans-serif", "system-ui", "sans-serif"]).set( body_background_fill_dark="#0f172a", block_background_fill_dark="#0f172a", block_title_background_fill_dark="#1e1c26", input_background_fill_dark="#0f172a", button_secondary_background_fill_dark="#0c1425", border_color_primary_dark="#21293b", background_fill_secondary_dark="#0f172a" ), css=css, retry_btn="Retry", undo_btn="Undo", clear_btn="Clear", submit_btn="Send", description="Cognitive Computation: 🐬 Chat multi llm" ) if __name__ == "__main__": demo.launch()