Auto restart and errror handling when fetching open llm leaderboard
Browse files
app.py
CHANGED
@@ -6,6 +6,9 @@ from tqdm import tqdm
|
|
6 |
from bs4 import BeautifulSoup
|
7 |
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
|
8 |
import gradio as gr
|
|
|
|
|
|
|
9 |
|
10 |
api = HfApi()
|
11 |
|
@@ -26,26 +29,32 @@ def get_sum(df_for_sum_function):
|
|
26 |
return {"Downloads": sum_downloads, "Likes": sum_likes}
|
27 |
|
28 |
def get_openllm_leaderboard():
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
def get_ranking(model_list, target_org):
|
|
|
|
|
49 |
for index, model in enumerate(model_list):
|
50 |
if model.split("/")[0].lower() == target_org.lower():
|
51 |
return [index+1, model]
|
@@ -208,10 +217,14 @@ def get_ranking_trend(json_data, org_name):
|
|
208 |
else:
|
209 |
return {"id": "Not Found", "rank": "Not Found"}
|
210 |
|
|
|
|
|
|
|
|
|
211 |
with open("org_names.txt", "r") as f:
|
212 |
org_names_in_list = [i.rstrip("\n") for i in f.readlines()]
|
213 |
|
214 |
-
|
215 |
INTRODUCTION_TEXT = f"""
|
216 |
🎯 The Organization Leaderboard aims to track organization rankings. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
217 |
|
@@ -232,6 +245,10 @@ INTRODUCTION_TEXT = f"""
|
|
232 |
**🌐 Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
|
233 |
|
234 |
**🌐 Note:** In trending models, first 300 models/datasets/spaces is being retrieved from huggingface.
|
|
|
|
|
|
|
|
|
235 |
"""
|
236 |
|
237 |
with gr.Blocks() as demo:
|
@@ -268,4 +285,8 @@ with gr.Blocks() as demo:
|
|
268 |
headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count", "🔥 Trending Space", "👑 Best Rank at Trending Spaces"]
|
269 |
gr.Dataframe(spaces_df.head(200), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])
|
270 |
|
|
|
|
|
|
|
|
|
271 |
demo.launch()
|
|
|
6 |
from bs4 import BeautifulSoup
|
7 |
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
|
8 |
import gradio as gr
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
import datetime
|
11 |
+
|
12 |
|
13 |
api = HfApi()
|
14 |
|
|
|
29 |
return {"Downloads": sum_downloads, "Likes": sum_likes}
|
30 |
|
31 |
def get_openllm_leaderboard():
|
32 |
+
try:
|
33 |
+
url = 'https://huggingfaceh4-open-llm-leaderboard.hf.space/'
|
34 |
+
response = requests.get(url)
|
35 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
36 |
+
script_elements = soup.find_all('script')
|
37 |
+
data = json.loads(str(script_elements[1])[31:-10])
|
38 |
+
|
39 |
+
component_index = 19
|
40 |
+
|
41 |
+
result_list = []
|
42 |
+
i = 0
|
43 |
+
while True:
|
44 |
+
try:
|
45 |
+
normal_name = data['components'][component_index]['props']['value']['data'][i][-1]
|
46 |
+
result_list.append(normal_name)
|
47 |
+
i += 1
|
48 |
+
except (IndexError, AttributeError):
|
49 |
+
return result_list
|
50 |
+
except Exception as e:
|
51 |
+
print("Error on open llm leaderboard: ", e)
|
52 |
+
return []
|
53 |
|
54 |
|
55 |
def get_ranking(model_list, target_org):
|
56 |
+
if model_list == []:
|
57 |
+
return "Error on Leaderboard"
|
58 |
for index, model in enumerate(model_list):
|
59 |
if model.split("/")[0].lower() == target_org.lower():
|
60 |
return [index+1, model]
|
|
|
217 |
else:
|
218 |
return {"id": "Not Found", "rank": "Not Found"}
|
219 |
|
220 |
+
def restart_space():
|
221 |
+
api.restart_space(repo_id="TFLai/organization-leaderboard", token=HF_TOKEN)
|
222 |
+
|
223 |
+
|
224 |
with open("org_names.txt", "r") as f:
|
225 |
org_names_in_list = [i.rstrip("\n") for i in f.readlines()]
|
226 |
|
227 |
+
datetime = str(datetime.datetime.now().strftime("%Y-%m-%d %H:%M"))
|
228 |
INTRODUCTION_TEXT = f"""
|
229 |
🎯 The Organization Leaderboard aims to track organization rankings. This space is inspired by the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
230 |
|
|
|
245 |
**🌐 Note:** In the model's dataframe, there are some columns related to the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). This data is also retrieved through web scraping.
|
246 |
|
247 |
**🌐 Note:** In trending models, first 300 models/datasets/spaces is being retrieved from huggingface.
|
248 |
+
|
249 |
+
## Last Update
|
250 |
+
|
251 |
+
⌛ This space is last updated in **{datetime}**.
|
252 |
"""
|
253 |
|
254 |
with gr.Blocks() as demo:
|
|
|
285 |
headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count", "🔥 Trending Space", "👑 Best Rank at Trending Spaces"]
|
286 |
gr.Dataframe(spaces_df.head(200), headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])
|
287 |
|
288 |
+
|
289 |
+
|
290 |
+
scheduler = BackgroundScheduler()
|
291 |
+
scheduler.add_job(restart_space, "interval", seconds=21600)
|
292 |
demo.launch()
|