File size: 6,903 Bytes
b787f43 9a63e7b b787f43 9a140a8 b787f43 1148fdd a505e9c 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 cb862a5 b787f43 1148fdd cb862a5 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 1148fdd b787f43 9a140a8 b787f43 9a140a8 b787f43 5ae3fd9 f60b616 0bae0f5 b787f43 0bae0f5 b787f43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
import os
from huggingface_hub import CommitOperationAdd, create_commit, RepoUrl
from huggingface_hub import EvalResult, ModelCard
from huggingface_hub.repocard_data import eval_results_to_model_index
import time
from pytablewriter import MarkdownTableWriter
import gradio as gr
from openllm import get_json_format_data, get_datas
import pandas as pd
BOT_HF_TOKEN = os.getenv('BOT_HF_TOKEN')
data = get_json_format_data()
finished_models = get_datas(data)
df = pd.DataFrame(finished_models)
desc = """
This is an automated PR created with https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr
The purpose of this PR is to add evaluation results from the Open LLM Leaderboard to your model card.
If you encounter any issues, please report them to https://huggingface.co/spaces/Weyaxi/open-llm-leaderboard-results-pr/discussions
"""
def search(df, value):
result_df = df[df["Model"] == value]
return result_df.iloc[0].to_dict() if not result_df.empty else None
def get_details_url(repo):
author, model = repo.split("/")
return f"https://huggingface.co/datasets/open-llm-leaderboard/{author}__{model}-details"
def get_query_url(repo):
return f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"
def get_task_summary(results):
return {
"IFEval":
{"dataset_type":"HuggingFaceH4/ifeval",
"dataset_name":"IFEval (0-Shot)",
"metric_type": "inst_level_strict_acc and prompt_level_strict_acc",
"metric_value":results["IFEval"],
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision":None,
"dataset_args":{"num_few_shot": 0},
"metric_name":"strict accuracy"
},
"BBH":
{"dataset_type":"BBH",
"dataset_name":"BBH (3-Shot)",
"metric_type":"acc_norm",
"metric_value":results["BBH"],
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision":None,
"dataset_args":{"num_few_shot": 3},
"metric_name":"normalized accuracy"
},
"MATH Lvl 5":
{
"dataset_type":"hendrycks/competition_math",
"dataset_name":"MATH Lvl 5 (4-Shot)",
"metric_type":"exact_match",
"metric_value":results["MATH Lvl 5"],
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision":None,
"dataset_args":{"num_few_shot": 4},
"metric_name":"exact match"
},
"GPQA":
{
"dataset_type":"Idavidrein/gpqa",
"dataset_name":"GPQA (0-shot)",
"metric_type":"acc_norm",
"metric_value":results["GPQA"],
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_revision":None,
"dataset_args":{"num_few_shot": 0},
"metric_name":"acc_norm"
},
"MuSR":
{
"dataset_type":"TAUR-Lab/MuSR",
"dataset_name":"MuSR (0-shot)",
"metric_type":"acc_norm",
"metric_value":results["MUSR"],
"dataset_config": None, # don't know
"dataset_split": None, # don't know
"dataset_args":{"num_few_shot": 0},
"metric_name":"acc_norm"
},
"MMLU-PRO":
{
"dataset_type":"TIGER-Lab/MMLU-Pro",
"dataset_name":"MMLU-PRO (5-shot)",
"metric_type":"acc",
"metric_value":results["MMLU-PRO"],
"dataset_config":"main",
"dataset_split":"test",
"dataset_args":{"num_few_shot": 5},
"metric_name":"accuracy"
}
}
def get_eval_results(repo):
results = search(df, repo)
task_summary = get_task_summary(results)
md_writer = MarkdownTableWriter()
md_writer.headers = ["Metric", "Value"]
md_writer.value_matrix = [["Avg.", results['Average ⬆️']]] + [[v["dataset_name"], v["metric_value"]] for v in task_summary.values()]
text = f"""
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here]({get_details_url(repo)})
{md_writer.dumps()}
"""
return text
def get_edited_yaml_readme(repo, token: str | None):
card = ModelCard.load(repo, token=token)
results = search(df, repo)
common = {"task_type": 'text-generation', "task_name": 'Text Generation', "source_name": "Open LLM Leaderboard", "source_url": f"https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query={repo}"}
tasks_results = get_task_summary(results)
if not card.data['eval_results']: # No results reported yet, we initialize the metadata
card.data["model-index"] = eval_results_to_model_index(repo.split('/')[1], [EvalResult(**task, **common) for task in tasks_results.values()])
else: # We add the new evaluations
for task in tasks_results.values():
cur_result = EvalResult(**task, **common)
if any(result.is_equal_except_value(cur_result) for result in card.data['eval_results']):
continue
card.data['eval_results'].append(cur_result)
return str(card)
def commit(repo, pr_number=None, message="Adding Evaluation Results", oauth_token: gr.OAuthToken | None = None): # specify pr number if you want to edit it, don't if you don't want
global df
data = get_json_format_data()
finished_models = get_datas(data)
df = pd.DataFrame(finished_models)
if not oauth_token:
raise gr.Warning("You are not logged in. Click on 'Sign in with Huggingface' to log in.")
else:
token = oauth_token
if repo.startswith("https://huggingface.co/"):
try:
repo = RepoUrl(repo).repo_id
except Exception:
raise gr.Error(f"Not a valid repo id: {str(repo)}")
edited = {"revision": f"refs/pr/{pr_number}"} if pr_number else {"create_pr": True}
try:
try: # check if there is a readme already
readme_text = get_edited_yaml_readme(repo, token=token) + get_eval_results(repo)
except Exception as e:
if "Repo card metadata block was not found." in str(e): # There is no readme
readme_text = get_edited_yaml_readme(repo, token=token)
else:
print(f"Something went wrong: {e}")
liste = [CommitOperationAdd(path_in_repo="README.md", path_or_fileobj=readme_text.encode())]
commit = (create_commit(repo_id=repo, token=token, operations=liste, commit_message=message, commit_description=desc, repo_type="model", **edited).pr_url)
return commit
except Exception as e:
if "Discussions are disabled for this repo" in str(e):
return "Discussions disabled"
elif "Cannot access gated repo" in str(e):
return "Gated repo"
elif "Repository Not Found" in str(e):
return "Repository Not Found"
else:
return e |