Spaces:
Runtime error
Runtime error
File size: 7,657 Bytes
955f567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import os
from abc import ABC, abstractmethod
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import SRTFormatter, WebVTTFormatter
# import whisperx
import stable_whisper
from faster_whisper import WhisperModel
class Transcription(ABC):
def __init__(self, media_path, output_path, subtitle_format):
self.media_path = media_path
self.output_path = os.path.join(os.getcwd(), output_path)
self.filename = os.path.splitext(media_path)[0]
self.subtitle_format = subtitle_format
@abstractmethod
def generate_transcript(self):
pass
@abstractmethod
def save_transcript(self):
pass
class YouTubeTranscriptAPI(Transcription):
def __init__(self, url, media_path, output_path, subtitle_format='srt', transcript_language='en'):
super().__init__(media_path, output_path, subtitle_format)
self.url = url
self.video_id = url.split('v=')[1]
self.transcript_language = transcript_language
self.supported_subtitle_formats = ['srt', 'vtt']
assert(self.subtitle_format.lower() in self.supported_subtitle_formats)
def get_available_transcripts(self):
'''
Returns a dictionary of available transcripts & their info
'''
# Getting List of all Available Transcripts
transcript_list = YouTubeTranscriptApi.list_transcripts(self.video_id)
# Converting to Available Transcripts to Dictionary
transcripts_info = dict()
for transcript in transcript_list:
transcript_info = {
'language': transcript.language,
'is_generated': transcript.is_generated,
'is_translatable': transcript.is_translatable
}
transcripts_info[transcript.language_code] = transcript_info
return transcripts_info
def generate_transcript(self):
'''
Generates the transcript for the media file
'''
self.transcript = YouTubeTranscriptApi.get_transcript(self.video_id, languages=[self.transcript_language])
def save_transcript(self):
'''
Writes the transcript into file
'''
# Getting the Formatter
if self.subtitle_format == 'srt':
formatter = SRTFormatter()
elif self.subtitle_format == 'vtt':
formatter = WebVTTFormatter()
# Getting the Formatted Transcript
formatted_transcript = formatter.format_transcript(self.transcript)
# Writing the Formatted Transcript
file_path = f'{self.filename}.{self.subtitle_format}'
with open(file_path, 'w', encoding='utf-8') as transcript_file:
transcript_file.write(formatted_transcript)
return file_path
class Whisper(Transcription):
def __init__(self, media_path, output_path, subtitle_format, word_level):
super().__init__(media_path, output_path, subtitle_format)
self.word_level = word_level
self.supported_subtitle_formats = ['ass', 'srt', 'vtt']
assert(self.subtitle_format.lower() in self.supported_subtitle_formats)
class FasterWhisper(Whisper):
def __init__(self, media_path, output_path, subtitle_format='srt', word_level=True):
super().__init__(media_path, output_path, subtitle_format, word_level)
self.model = WhisperModel("large-v2", device="cuda", compute_type="float16")
def generate_transcript(self):
'''
Generates the transcript for the media file
'''
all_text = []
all_segments = []
if self.word_level:
# Generating Word Level Transcript
segments, info = self.model.transcribe(self.media_path, word_timestamps=True)
# Converting to Dictionary
all_segments = []
for segment in segments:
for word in segment.words:
all_text.append(word.word)
segment_info = {
'text': word.word,
'start': round(word.start, 2),
'end': round(word.end, 2)
}
all_segments.append(segment_info)
else:
# Generating Word Level Transcript
segments, info = self.model.transcribe(self.media_path, beam_size=5)
# Converting to Dictionary
for segment in segments:
all_text.append(segment.text)
segment_info = {
'text': segment.text,
'start': round(segment.start, 2),
'end': round(segment.end, 2)
}
all_segments.append(segment_info)
# Setting Transcript Properties
self.text = ' '.join(all_text)
self.language = info.language
self.segments = all_segments
# Returning Transcript Properties as Dictionary
transcript_dict = {
'language': self.language,
'text': self.text,
'segments': self.segments
}
return transcript_dict
def save_transcript(self, transcript, output_file):
'''
Writes the transcript into file
'''
# TODO: Can't seem to find any built-in methods for writing transcript
pass
class StableWhisper(Whisper):
def __init__(self, media_path, output_path, subtitle_format='srt', word_level=True):
super().__init__(media_path, output_path, subtitle_format, word_level)
self.model = stable_whisper.load_model('large-v2')
def generate_transcript(self):
'''
Generates the transcript for the media file
'''
# Generating Word Level Transcript
self.result = self.model.transcribe(self.media_path, word_timestamps=self.word_level)
# Converting to Dictionary
self.resultdict = self.result.to_dict()
# Formatting Dictionary
all_segments = []
if self.word_level:
all_segments = []
for segment in self.resultdict['segments']:
for word in segment['words']:
segment_info = {
'text': word['word'],
'start': round(word['start'], 2),
'end': round(word['end'], 2)
}
all_segments.append(segment_info)
else:
for segment in self.resultdict['segments']:
segment_info = {
'text': segment['text'],
'start': round(segment['start'], 2),
'end': round(segment['end'], 2)
}
all_segments.append(segment_info)
# Setting Transcript Properties
self.text = self.resultdict['text']
self.language = self.resultdict['language']
self.segments = all_segments
# Returning Transcript Properties as Dictionary
transcript_dict = {
'language': self.language,
'text': self.text,
'segments': self.segments
}
return transcript_dict
def save_transcript(self):
'''
Writes the transcript into file
'''
# Writing according to the Format
file_path = f'{self.filename}.{self.subtitle_format}'
if self.subtitle_format == 'ass':
self.result.to_ass(file_path, segment_level=True, word_level=self.word_level)
elif self.subtitle_format in ['srt', 'vtt']:
self.result.to_srt_vtt(file_path, segment_level=True, word_level=self.word_level)
return file_path |