Spaces:
Runtime error
Runtime error
File size: 19,601 Bytes
955f567 11bc390 955f567 11bc390 955f567 11bc390 955f567 11bc390 955f567 11bc390 955f567 11bc390 955f567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
from langchain import PromptTemplate
from langchain.chat_models import ChatOpenAI
from langchain.chains.summarize import load_summarize_chain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.document_loaders import DirectoryLoader
from wordcloud import WordCloud, STOPWORDS
import numpy as np
from langchain.embeddings import OpenAIEmbeddings
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import os
from langchain.docstore.document import Document
import re
from collections import Counter
# import nltk
from nltk.corpus import stopwords
os.environ["OPENAI_API_KEY"] = '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'
class Extract_Summary:
def __init__(self,text_input, file_path=None, chunks=2000, chunking_strategy=None, LLM_Model="gpt-3.5-turbo", temperature=1, top_p=None, top_k=None):
self.chunks = chunks
self.file_path = file_path
self.text_input = text_input
self.chuking_strategy = chunking_strategy
self.LLM_Model = LLM_Model
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
def doc_summary(self, docs):
# print(f'You have {len(docs)} documents')
num_words = sum([len(doc.page_content.split(" ")) for doc in docs])
# print(f"You have {num_words} words in documents")
return num_words, len(docs)
def load_docs(self):
if self.file_path is not None:
docs = DirectoryLoader(self.file_path, glob="**/*.txt").load()
else:
docs = Document(page_content=f"{self.text_input}", metadata={"source": "local"})
docs = [docs]
# docs = self.text_input
tokens, documents_count = self.doc_summary(docs)
if documents_count > 8 or tokens > 6000: ## Add token checks as well. Add Model availabilty checks
docs = self.chunk_docs(docs) ## Handling Large Document with token more than 6000
docs = self.summarise_large_documents(docs)
tokens, documents_count = self.doc_summary(docs)
if tokens > 2000:
docs = self.chunk_docs(docs)
chain_type = 'map_reduce'
else:
chain_type = 'stuff'
print("=="*20)
print(tokens)
print(chain_type)
return docs, chain_type
## Add ensemble retriver for this as well.
def summarise_large_documents(self, docs):
print("=="*20)
print('Orignial Docs size : ' ,len(docs))
embeddings = OpenAIEmbeddings()
vectors = embeddings. embed_documents([x.page_content for x in docs])
# Silhoute Score
n_clusters_range = range(2, 11)
silhouette_scores = []
for i in n_clusters_range:
kmeans = KMeans(n_clusters=i, init='k-means++',
max_iter=300, n_init=10, random_state=0)
kmeans.fit(vectors)
score = silhouette_score(vectors, kmeans.labels_)
silhouette_scores.append(score)
optimal_n_clusters = n_clusters_range[np.argmax(silhouette_scores)]
# n_clusters = 5
kmeans = KMeans(n_clusters=optimal_n_clusters,
random_state=42).fit(vectors)
# Getting documents closers to centeriod
closest_indices = []
# Loop through the number of clusters you have
for i in range(optimal_n_clusters):
# Get the list of distances from that particular cluster center
distances = np.linalg.norm(
vectors - kmeans.cluster_centers_[i], axis=1)
# Find the list position of the closest one (using argmin to find the smallest distance)
closest_index = np.argmin(distances)
# Append that position to your closest indices list
closest_indices.append(closest_index)
sorted_indices = sorted(closest_indices)
selected_docs = [docs[doc] for doc in sorted_indices]
print('Selected Docs size : ' ,len(selected_docs))
return selected_docs
def chunk_docs(self, docs):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunks,
chunk_overlap=50,
length_function=len,
is_separator_regex=False,
)
splitted_document = text_splitter.split_documents(docs)
return splitted_document
def get_key_information_stuff(self):
prompt_template = """
Extract Key Informtion from the text below. This key information can include People Names & their Role/rank, Locations, Organization,Nationalities,Religions,
Events such as Historical, social, sporting and naturally occurring events, Products , Address & email, URL, Date & Time, Provide the list of Key information each
should be labeled with thier crossponding category.if key information related to category is not present,add "Not mentioned" in the response.
{text}
"""
prompt = PromptTemplate(
template=prompt_template, input_variables=['text'])
return prompt
def get_key_information_map_reduce(self):
map_prompts = """
Extract Key Informtion from the text below. This key information can include People Names & their Role/rank, Locations, Organization,Nationalities,Religions,
Events such as Historical, social, sporting and naturally occurring events, Products , Address & email, URL, Date & Time, Provide the list of Key information each
should be labeled with thier crossponding category.if key information related to category is not present, add Not mentioned in the response.
{text}
"""
combine_prompt = """
Below Text contains Key Information that was extracted from text. You job is to combine the Key Information and Return the results.This key information can include People Names & their Role/rank,
Locations, Organization,Nationalities,Religions,Events such as Historical, social, sporting and naturally occurring events, Products ,
Address & email, URL, Date & Time, Provide the list of Key information each should be labeled with thier crossponding category.
if key information related to category is not present, add Not mentioned in the response.
{text}
"""
map_template = PromptTemplate(template=map_prompts,input_variables=['text']
)
# combine_template = PromptTemplate(template=combine_prompt,input_variables=['Summary_type','Summary_strategy','Target_Person_type','Response_lenght','Writing_style','text']
# )
combine_template = PromptTemplate(template=combine_prompt,input_variables=['text'])
return map_template, combine_template
def get_stuff_prompt(self):
prompt_template = """
Write a {Summary_type} and {Summary_strategy} for {Target_Person_type} lenght of the summary should be of {Response_length} words and writing style should be of {Writing_style}.
From the text below by identifying most important topics based on their importance in text corpus and summary should be based on these important topics.
{text}
"""
# prompt = PromptTemplate.from_template(prompt_template,input_variables=['Summary_type','Summary_strategy','Target_Person_type','Response_lenght','Writing_style','text'])
prompt = PromptTemplate(
template=prompt_template, input_variables=['Summary_type','Summary_strategy','Target_Person_type','Response_length','Writing_style','text'])
return prompt
def define_prompts(self):
map_prompts = """
"Identify the key topics in the following text. in your response only add the most relevant and most important topics and Concised yet eloborative summary of text below.
Dont add all the topics that you find.if you didnt find any important topic,dont return anything in response.Also provide me importance score of each idenfied topics out of 1.
'Your response should be like this , eg: Summary of text: blah blah blah,list of comma saperated topic names `Topic 1 Topic 2 Topic 3`
and list of comma saperated importance scores for these topics `1 , 0.5,0.2`, so response should be formated like this.
Summary:
blah Blah blah
Topic Names : Topic 1, Topic 2, Topic 3
Importance Score: 1,0.4,0.3
{text}
"""
combine_prompt = """
Here is list of summaries ,Topics Names and thier respective importance score that were extracted from text.
your job is to provide best possible summary based on the list of summaries below and Use most important topics present based on thier importance score.
Write a {Summary_type} and {Summary_strategy} for {Target_Person_type} lenght of the summary should be of {Response_length} words and writing style should be of {Writing_style}.
{text}
output Format should be like this.Dont try Return to multiple summaries.Only return one combined summary for above mentioned summaries.
Summary:
blah blah blah
"""
map_template = PromptTemplate(template=map_prompts, input_variables=['text']
)
combine_template = PromptTemplate(
template=combine_prompt, input_variables=['Summary_type','Summary_strategy','Target_Person_type','Response_length','Writing_style','text'])
return map_template, combine_template
# pass
def define_chain(self,Summary_type,Summary_strategy,
Target_Person_type,Response_length,Writing_style,chain_type=None,key_information=False):
docs, chain_type = self.load_docs()
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
if chain_type == 'stuff':
if key_information:
prompt = self.get_key_information_stuff()
else:
prompt = self.get_stuff_prompt()
chain = load_summarize_chain(
llm=llm, chain_type='stuff', verbose=False,prompt=prompt)
elif chain_type == 'map_reduce':
if key_information:
map_prompts, combine_prompt = self.get_key_information_map_reduce()
else:
map_prompts, combine_prompt = self.define_prompts()
chain = load_summarize_chain(
llm=llm, map_prompt=map_prompts, combine_prompt=combine_prompt, chain_type='map_reduce', verbose=False)
# elif chain_type == 'refine':
# chain = load_summarize_chain(llm=llm, question_prompt=map_prompts,
# refine_prompt=combine_prompt, chain_type='refine', verbose=False)
if ~key_information:
output = chain.run(Summary_type=Summary_type,Summary_strategy=Summary_strategy,
Target_Person_type=Target_Person_type,Response_length=Response_length,Writing_style=Writing_style,input_documents = docs)
else:
output = chain.run(input_documents = docs)
# self.create_wordcloud(output=output)
# display(Markdown(f"Text: {docs}"))
# display(Markdown(f"Summary Response: {output}"))
return output
def parse_key_information(self,text):
lines = [line.strip() for line in text.split('\n') if line.strip()]
# Initialize the dictionary to store information
info_dict = {}
current_category = None
# Iterate through each line and process the information
for line in lines:
if re.match(r'^[A-Z][\w\s&/-]*:', line):
current_category = line.rstrip(':')
info_dict[current_category] = []
else:
if line != '- Not mentioned':
info_dict[current_category].append(line.replace('- ', ''))
# Remove categories with no entries
info_dict = {category: entries for category, entries in info_dict.items() if entries}
return info_dict
# def create_wordcloud(self, output):
# wc = WordCloud(stopwords=STOPWORDS, height=500, width=300)
# wc.generate(output)
# wc.to_file('WordCloud.png')
def create_word_count(text):
# Split the text into words, convert them to lowercase
words = text.split()
words = [word.lower() for word in words]
# Get a list of English stop words
stop_words = set(stopwords.words('english'))
# Filter out stop words from the list of words
filtered_words = [word for word in words if word not in stop_words]
# Count the frequencies of each word
word_counts = Counter(filtered_words)
# Convert the Counter object to a dictionary
word_count_dict = dict(word_counts)
return word_count_dict
class AudioBookNarration:
def __init__(self,text_input ,file_path=None, chunks=2000, chunking_strategy=None, LLM_Model="gpt-3.5-turbo", temperature=1, top_p=None, top_k=None):
self.chunks = chunks
self.file_path = file_path
self.text_input = text_input
self.chuking_strategy = chunking_strategy
self.LLM_Model = LLM_Model
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
def doc_summary(self, docs):
# print(f'You have {len(docs)} documents')
num_words = sum([len(doc.page_content.split(" ")) for doc in docs])
# print(f"You have {num_words} words in documents")
return num_words, len(docs)
def load_docs(self):
if self.file_path is not None:
docs = DirectoryLoader(self.file_path, glob="**/*.txt").load()
else:
docs = Document(page_content=f"{self.text_input}", metadata={"source": "local"})
docs = [docs]
# docs = self.text_input
tokens, documents_count = self.doc_summary(docs)
if documents_count > 8 or tokens > 6000: ## Add token checks as well. Add Model availabilty checks
docs = self.chunk_docs(docs) ## Handling Large Document with token more than 6000
docs = self.summarise_large_documents(docs)
tokens, documents_count = self.doc_summary(docs)
if tokens > 2000:
docs = self.chunk_docs(docs)
chain_type = 'map_reduce'
else:
chain_type = 'stuff'
print("=="*20)
print(tokens)
print(chain_type)
return docs, chain_type
## Add ensemble retriver for this as well.
def summarise_large_documents(self, docs):
print("=="*20)
print('Orignial Docs size : ' ,len(docs))
embeddings = OpenAIEmbeddings()
vectors = embeddings. embed_documents([x.page_content for x in docs])
# Silhoute Score
n_clusters_range = range(2, 11)
silhouette_scores = []
for i in n_clusters_range:
kmeans = KMeans(n_clusters=i, init='k-means++',
max_iter=300, n_init=10, random_state=0)
kmeans.fit(vectors)
score = silhouette_score(vectors, kmeans.labels_)
silhouette_scores.append(score)
optimal_n_clusters = n_clusters_range[np.argmax(silhouette_scores)]
# n_clusters = 5
kmeans = KMeans(n_clusters=optimal_n_clusters,
random_state=42).fit(vectors)
# Getting documents closers to centeriod
closest_indices = []
# Loop through the number of clusters you have
for i in range(optimal_n_clusters):
# Get the list of distances from that particular cluster center
distances = np.linalg.norm(
vectors - kmeans.cluster_centers_[i], axis=1)
# Find the list position of the closest one (using argmin to find the smallest distance)
closest_index = np.argmin(distances)
# Append that position to your closest indices list
closest_indices.append(closest_index)
sorted_indices = sorted(closest_indices)
selected_docs = [docs[doc] for doc in sorted_indices]
print('Selected Docs size : ' ,len(selected_docs))
return selected_docs
def chunk_docs(self, docs):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=self.chunks,
chunk_overlap=50,
length_function=len,
is_separator_regex=False,
)
splitted_document = text_splitter.split_documents(docs)
return splitted_document
def get_stuff_prompt(self):
prompt_template = """
Create a {Narration_style} narration for this below text. This narration will be used for audiobook generation.
So provide the output that is verbose, easier to understand and full of expressions.
{text}
"""
prompt = PromptTemplate(
template=prompt_template, input_variables=['Narration_style','text'])
return prompt
def define_prompts(self):
map_prompts = """
Create a {Narration_style} narration for this below text. This narration will be used for audiobook generation.
So provide the output that is verbose, easier to understand and full of expressions.
{text}
"""
combine_prompt = """
Below are the list of text that represent narration from the text.
Your job is to combine these narrations and craete one verbose,easier to understand and full of experssions {Narration_style} narration.
{text}
"""
map_template = PromptTemplate(template=map_prompts, input_variables=['Narration_style','text']
)
combine_template = PromptTemplate(
template=combine_prompt, input_variables=['Narration_style','text'])
return map_template, combine_template
# pass
def define_chain(self,Narration_style=None,chain_type=None):
docs, chain_type = self.load_docs()
llm = ChatOpenAI(model='gpt-3.5-turbo', temperature=0)
if chain_type == 'stuff':
prompt = self.get_stuff_prompt()
chain = load_summarize_chain(
llm=llm, chain_type='stuff', verbose=False,prompt=prompt)
elif chain_type == 'map_reduce':
map_prompts, combine_prompt = self.define_prompts()
chain = load_summarize_chain(
llm=llm, map_prompt=map_prompts, combine_prompt=combine_prompt, chain_type='map_reduce', verbose=False)
output = chain.run(Narration_style = Narration_style,input_documents = docs)
# self.create_wordcloud(output=output)
# display(Markdown(f"Text: {docs}"))
# display(Markdown(f"Summary Response: {output}"))
return output
|