import os import sys import torch # import whisperx import stable_whisper # from faster_whisper import WhisperModel import dl_translate as dlt def load_models(): ''' Checks CUDA availability & loads models ''' try: print(f"CUDA Available: {torch.cuda.is_available()}") print(f"CUDA Device: {torch.cuda.get_device_name(torch.cuda.current_device())}") models = dict() # Transcription Model - Whisper models['transcription'] = stable_whisper.load_model('large-v2') # Stable Whisper # models['transcription'] = WhisperModel("large-v2", device="cuda", compute_type="float16") # Faster Whisper # Translation Model - NLLB nllb_model = 'facebook/nllb-200-distilled-600M' # nllb_model = 'facebook/nllb-200-1.3B' # nllb_model = 'facebook/nllb-200-3.3B' # nllb_model = 'facebook/nllb-moe-54b' models['translation'] = dlt.TranslationModel(nllb_model) # TODO: Audio Generation Model - Bark # models['audiobook'] = return models except KeyboardInterrupt: print('Interrupted') try: sys.exit(0) except SystemExit: os._exit(0)