|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import FromOriginalControlNetMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.unets.unet_2d_blocks import ( |
|
CrossAttnDownBlock2D, |
|
DownBlock2D, |
|
UNetMidBlock2D, |
|
UNetMidBlock2DCrossAttn, |
|
get_down_block, |
|
) |
|
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class ControlNetOutput(BaseOutput): |
|
""" |
|
The output of [`ControlNetModel`]. |
|
|
|
Args: |
|
down_block_res_samples (`tuple[torch.Tensor]`): |
|
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should |
|
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be |
|
used to condition the original UNet's downsampling activations. |
|
mid_down_block_re_sample (`torch.Tensor`): |
|
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape |
|
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`. |
|
Output can be used to condition the original UNet's middle block activation. |
|
""" |
|
|
|
down_block_res_samples: Tuple[torch.Tensor] |
|
mid_block_res_sample: torch.Tensor |
|
|
|
|
|
class ControlNetConditioningEmbedding(nn.Module): |
|
""" |
|
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN |
|
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized |
|
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the |
|
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides |
|
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full |
|
model) to encode image-space conditions ... into feature maps ..." |
|
""" |
|
|
|
def __init__( |
|
self, |
|
conditioning_embedding_channels: int, |
|
conditioning_channels: int = 5, |
|
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256), |
|
): |
|
super().__init__() |
|
|
|
self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1) |
|
|
|
self.blocks = nn.ModuleList([]) |
|
|
|
for i in range(len(block_out_channels) - 1): |
|
channel_in = block_out_channels[i] |
|
channel_out = block_out_channels[i + 1] |
|
self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)) |
|
self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=1)) |
|
|
|
self.conv_out = zero_module( |
|
nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1) |
|
) |
|
|
|
def forward(self, conditioning): |
|
embedding = self.conv_in(conditioning) |
|
embedding = F.silu(embedding) |
|
|
|
for block in self.blocks: |
|
embedding = block(embedding) |
|
embedding = F.silu(embedding) |
|
|
|
embedding = self.conv_out(embedding) |
|
|
|
return embedding |
|
|
|
|
|
class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalControlNetMixin): |
|
""" |
|
A ControlNet model. |
|
|
|
Args: |
|
in_channels (`int`, defaults to 4): |
|
The number of channels in the input sample. |
|
flip_sin_to_cos (`bool`, defaults to `True`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, defaults to 0): |
|
The frequency shift to apply to the time embedding. |
|
down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): |
|
block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, defaults to 2): |
|
The number of layers per block. |
|
downsample_padding (`int`, defaults to 1): |
|
The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, defaults to 1): |
|
The scale factor to use for the mid block. |
|
act_fn (`str`, defaults to "silu"): |
|
The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): |
|
The number of groups to use for the normalization. If None, normalization and activation layers is skipped |
|
in post-processing. |
|
norm_eps (`float`, defaults to 1e-5): |
|
The epsilon to use for the normalization. |
|
cross_attention_dim (`int`, defaults to 1280): |
|
The dimension of the cross attention features. |
|
transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): |
|
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for |
|
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], |
|
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. |
|
encoder_hid_dim (`int`, *optional*, defaults to None): |
|
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` |
|
dimension to `cross_attention_dim`. |
|
encoder_hid_dim_type (`str`, *optional*, defaults to `None`): |
|
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text |
|
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. |
|
attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): |
|
The dimension of the attention heads. |
|
use_linear_projection (`bool`, defaults to `False`): |
|
class_embed_type (`str`, *optional*, defaults to `None`): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, |
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. |
|
addition_embed_type (`str`, *optional*, defaults to `None`): |
|
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or |
|
"text". "text" will use the `TextTimeEmbedding` layer. |
|
num_class_embeds (`int`, *optional*, defaults to 0): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing |
|
class conditioning with `class_embed_type` equal to `None`. |
|
upcast_attention (`bool`, defaults to `False`): |
|
resnet_time_scale_shift (`str`, defaults to `"default"`): |
|
Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. |
|
projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): |
|
The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when |
|
`class_embed_type="projection"`. |
|
controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): |
|
The channel order of conditional image. Will convert to `rgb` if it's `bgr`. |
|
conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): |
|
The tuple of output channel for each block in the `conditioning_embedding` layer. |
|
global_pool_conditions (`bool`, defaults to `False`): |
|
TODO(Patrick) - unused parameter. |
|
addition_embed_type_num_heads (`int`, defaults to 64): |
|
The number of heads to use for the `TextTimeEmbedding` layer. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
conditioning_channels: int = 3, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str, ...] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), |
|
layers_per_block: int = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: int = 1280, |
|
transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int, ...]] = 8, |
|
num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
addition_time_embed_dim: Optional[int] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
controlnet_conditioning_channel_order: str = "rgb", |
|
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), |
|
global_pool_conditions: bool = False, |
|
addition_embed_type_num_heads: int = 64, |
|
): |
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
num_attention_heads = num_attention_heads or attention_head_dim |
|
|
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(transformer_layers_per_block, int): |
|
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types) |
|
|
|
|
|
conv_in_kernel = 3 |
|
conv_in_padding = (conv_in_kernel - 1) // 2 |
|
self.conv_in = nn.Conv2d( |
|
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding |
|
) |
|
|
|
|
|
time_embed_dim = block_out_channels[0] * 4 |
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = block_out_channels[0] |
|
self.time_embedding = TimestepEmbedding( |
|
timestep_input_dim, |
|
time_embed_dim, |
|
act_fn=act_fn, |
|
) |
|
|
|
if encoder_hid_dim_type is None and encoder_hid_dim is not None: |
|
encoder_hid_dim_type = "text_proj" |
|
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type) |
|
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") |
|
|
|
if encoder_hid_dim is None and encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." |
|
) |
|
|
|
if encoder_hid_dim_type == "text_proj": |
|
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) |
|
elif encoder_hid_dim_type == "text_image_proj": |
|
|
|
|
|
|
|
self.encoder_hid_proj = TextImageProjection( |
|
text_embed_dim=encoder_hid_dim, |
|
image_embed_dim=cross_attention_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
|
|
elif encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." |
|
) |
|
else: |
|
self.encoder_hid_proj = None |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
elif class_embed_type == "projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
else: |
|
self.class_embedding = None |
|
|
|
if addition_embed_type == "text": |
|
if encoder_hid_dim is not None: |
|
text_time_embedding_from_dim = encoder_hid_dim |
|
else: |
|
text_time_embedding_from_dim = cross_attention_dim |
|
|
|
self.add_embedding = TextTimeEmbedding( |
|
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads |
|
) |
|
elif addition_embed_type == "text_image": |
|
|
|
|
|
|
|
self.add_embedding = TextImageTimeEmbedding( |
|
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim |
|
) |
|
elif addition_embed_type == "text_time": |
|
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift) |
|
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
|
|
elif addition_embed_type is not None: |
|
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") |
|
|
|
|
|
self.controlnet_cond_embedding = ControlNetConditioningEmbedding( |
|
conditioning_embedding_channels=block_out_channels[0], |
|
block_out_channels=conditioning_embedding_out_channels, |
|
conditioning_channels=conditioning_channels, |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.controlnet_down_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(only_cross_attention, bool): |
|
only_cross_attention = [only_cross_attention] * len(down_block_types) |
|
|
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(down_block_types) |
|
|
|
if isinstance(num_attention_heads, int): |
|
num_attention_heads = (num_attention_heads,) * len(down_block_types) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
|
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) |
|
controlnet_block = zero_module(controlnet_block) |
|
self.controlnet_down_blocks.append(controlnet_block) |
|
|
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
transformer_layers_per_block=transformer_layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads[i], |
|
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel, |
|
downsample_padding=downsample_padding, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
for _ in range(layers_per_block): |
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) |
|
controlnet_block = zero_module(controlnet_block) |
|
self.controlnet_down_blocks.append(controlnet_block) |
|
|
|
if not is_final_block: |
|
controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1) |
|
controlnet_block = zero_module(controlnet_block) |
|
self.controlnet_down_blocks.append(controlnet_block) |
|
|
|
|
|
mid_block_channel = block_out_channels[-1] |
|
|
|
controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1) |
|
controlnet_block = zero_module(controlnet_block) |
|
self.controlnet_mid_block = controlnet_block |
|
|
|
if mid_block_type == "UNetMidBlock2DCrossAttn": |
|
self.mid_block = UNetMidBlock2DCrossAttn( |
|
transformer_layers_per_block=transformer_layers_per_block[-1], |
|
in_channels=mid_block_channel, |
|
temb_channels=time_embed_dim, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
cross_attention_dim=cross_attention_dim, |
|
num_attention_heads=num_attention_heads[-1], |
|
resnet_groups=norm_num_groups, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
) |
|
elif mid_block_type == "UNetMidBlock2D": |
|
self.mid_block = UNetMidBlock2D( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=time_embed_dim, |
|
num_layers=0, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_groups=norm_num_groups, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
add_attention=False, |
|
) |
|
else: |
|
raise ValueError(f"unknown mid_block_type : {mid_block_type}") |
|
|
|
@classmethod |
|
def from_unet( |
|
cls, |
|
unet: UNet2DConditionModel, |
|
controlnet_conditioning_channel_order: str = "rgb", |
|
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), |
|
load_weights_from_unet: bool = True, |
|
conditioning_channels: int = 3, |
|
): |
|
r""" |
|
Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`]. |
|
|
|
Parameters: |
|
unet (`UNet2DConditionModel`): |
|
The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied |
|
where applicable. |
|
""" |
|
transformer_layers_per_block = ( |
|
unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1 |
|
) |
|
encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None |
|
encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None |
|
addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None |
|
addition_time_embed_dim = ( |
|
unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None |
|
) |
|
|
|
controlnet = cls( |
|
encoder_hid_dim=encoder_hid_dim, |
|
encoder_hid_dim_type=encoder_hid_dim_type, |
|
addition_embed_type=addition_embed_type, |
|
addition_time_embed_dim=addition_time_embed_dim, |
|
transformer_layers_per_block=transformer_layers_per_block, |
|
in_channels=unet.config.in_channels, |
|
flip_sin_to_cos=unet.config.flip_sin_to_cos, |
|
freq_shift=unet.config.freq_shift, |
|
down_block_types=unet.config.down_block_types, |
|
only_cross_attention=unet.config.only_cross_attention, |
|
block_out_channels=unet.config.block_out_channels, |
|
layers_per_block=unet.config.layers_per_block, |
|
downsample_padding=unet.config.downsample_padding, |
|
mid_block_scale_factor=unet.config.mid_block_scale_factor, |
|
act_fn=unet.config.act_fn, |
|
norm_num_groups=unet.config.norm_num_groups, |
|
norm_eps=unet.config.norm_eps, |
|
cross_attention_dim=unet.config.cross_attention_dim, |
|
attention_head_dim=unet.config.attention_head_dim, |
|
num_attention_heads=unet.config.num_attention_heads, |
|
use_linear_projection=unet.config.use_linear_projection, |
|
class_embed_type=unet.config.class_embed_type, |
|
num_class_embeds=unet.config.num_class_embeds, |
|
upcast_attention=unet.config.upcast_attention, |
|
resnet_time_scale_shift=unet.config.resnet_time_scale_shift, |
|
projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim, |
|
mid_block_type=unet.config.mid_block_type, |
|
controlnet_conditioning_channel_order=controlnet_conditioning_channel_order, |
|
conditioning_embedding_out_channels=conditioning_embedding_out_channels, |
|
conditioning_channels=conditioning_channels, |
|
) |
|
|
|
if load_weights_from_unet: |
|
controlnet.conv_in.load_state_dict(unet.conv_in.state_dict()) |
|
controlnet.time_proj.load_state_dict(unet.time_proj.state_dict()) |
|
controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict()) |
|
|
|
if controlnet.class_embedding: |
|
controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict()) |
|
|
|
if hasattr(controlnet, "add_embedding"): |
|
controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict()) |
|
|
|
controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict()) |
|
controlnet.mid_block.load_state_dict(unet.mid_block.state_dict()) |
|
|
|
return controlnet |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
|
|
def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None: |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module splits the input tensor in slices to compute attention in |
|
several steps. This is useful for saving some memory in exchange for a small decrease in speed. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If |
|
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i in range(len(slice_size)): |
|
size = slice_size[i] |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
def _set_gradient_checkpointing(self, module, value: bool = False) -> None: |
|
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
controlnet_cond: torch.FloatTensor, |
|
conditioning_scale: float = 1.0, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guess_mode: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[ControlNetOutput, Tuple[Tuple[torch.FloatTensor, ...], torch.FloatTensor]]: |
|
""" |
|
The [`ControlNetModel`] forward method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The noisy input tensor. |
|
timestep (`Union[torch.Tensor, float, int]`): |
|
The number of timesteps to denoise an input. |
|
encoder_hidden_states (`torch.Tensor`): |
|
The encoder hidden states. |
|
controlnet_cond (`torch.FloatTensor`): |
|
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. |
|
conditioning_scale (`float`, defaults to `1.0`): |
|
The scale factor for ControlNet outputs. |
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`): |
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. |
|
timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): |
|
Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the |
|
timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep |
|
embeddings. |
|
attention_mask (`torch.Tensor`, *optional*, defaults to `None`): |
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask |
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large |
|
negative values to the attention scores corresponding to "discard" tokens. |
|
added_cond_kwargs (`dict`): |
|
Additional conditions for the Stable Diffusion XL UNet. |
|
cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): |
|
A kwargs dictionary that if specified is passed along to the `AttnProcessor`. |
|
guess_mode (`bool`, defaults to `False`): |
|
In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if |
|
you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.controlnet.ControlNetOutput`] **or** `tuple`: |
|
If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is |
|
returned where the first element is the sample tensor. |
|
""" |
|
|
|
channel_order = self.config.controlnet_conditioning_channel_order |
|
|
|
if channel_order == "rgb": |
|
|
|
... |
|
elif channel_order == "bgr": |
|
controlnet_cond = torch.flip(controlnet_cond, dims=[1]) |
|
else: |
|
raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
aug_emb = None |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type is not None: |
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
|
|
elif self.config.addition_embed_type == "text_time": |
|
if "text_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
text_embeds = added_cond_kwargs.get("text_embeds") |
|
if "time_ids" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" |
|
) |
|
time_ids = added_cond_kwargs.get("time_ids") |
|
time_embeds = self.add_time_proj(time_ids.flatten()) |
|
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) |
|
|
|
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) |
|
add_embeds = add_embeds.to(emb.dtype) |
|
aug_emb = self.add_embedding(add_embeds) |
|
|
|
emb = emb + aug_emb if aug_emb is not None else emb |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) |
|
sample = sample + controlnet_cond |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
if self.mid_block is not None: |
|
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: |
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
else: |
|
sample = self.mid_block(sample, emb) |
|
|
|
|
|
|
|
controlnet_down_block_res_samples = () |
|
|
|
for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): |
|
down_block_res_sample = controlnet_block(down_block_res_sample) |
|
controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = controlnet_down_block_res_samples |
|
|
|
mid_block_res_sample = self.controlnet_mid_block(sample) |
|
|
|
|
|
if guess_mode and not self.config.global_pool_conditions: |
|
scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) |
|
scales = scales * conditioning_scale |
|
down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] |
|
mid_block_res_sample = mid_block_res_sample * scales[-1] |
|
else: |
|
down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] |
|
mid_block_res_sample = mid_block_res_sample * conditioning_scale |
|
|
|
if self.config.global_pool_conditions: |
|
down_block_res_samples = [ |
|
torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples |
|
] |
|
mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) |
|
|
|
if not return_dict: |
|
return (down_block_res_samples, mid_block_res_sample) |
|
|
|
return ControlNetOutput( |
|
down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample |
|
) |
|
|
|
|
|
def zero_module(module): |
|
for p in module.parameters(): |
|
nn.init.zeros_(p) |
|
return module |
|
|