Spaces:
Running
on
Zero
Running
on
Zero
import bisect | |
import functools | |
import os | |
import warnings | |
from typing import List, NamedTuple, Optional | |
import numpy as np | |
# The code below is adapted from https://github.com/snakers4/silero-vad. | |
class VadOptions(NamedTuple): | |
"""VAD options. | |
Attributes: | |
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk, | |
probabilities ABOVE this value are considered as SPEECH. It is better to tune this | |
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets. | |
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out. | |
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer | |
than max_speech_duration_s will be split at the timestamp of the last silence that | |
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be | |
split aggressively just before max_speech_duration_s. | |
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms | |
before separating it | |
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model. | |
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate. | |
Values other than these may affect model performance!! | |
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side | |
""" | |
threshold: float = 0.5 | |
min_speech_duration_ms: int = 250 | |
max_speech_duration_s: float = float("inf") | |
min_silence_duration_ms: int = 2000 | |
window_size_samples: int = 1024 | |
speech_pad_ms: int = 400 | |
def get_speech_timestamps( | |
audio: np.ndarray, | |
vad_options: Optional[VadOptions] = None, | |
**kwargs, | |
) -> List[dict]: | |
"""This method is used for splitting long audios into speech chunks using silero VAD. | |
Args: | |
audio: One dimensional float array. | |
vad_options: Options for VAD processing. | |
kwargs: VAD options passed as keyword arguments for backward compatibility. | |
Returns: | |
List of dicts containing begin and end samples of each speech chunk. | |
""" | |
if vad_options is None: | |
vad_options = VadOptions(**kwargs) | |
threshold = vad_options.threshold | |
min_speech_duration_ms = vad_options.min_speech_duration_ms | |
max_speech_duration_s = vad_options.max_speech_duration_s | |
min_silence_duration_ms = vad_options.min_silence_duration_ms | |
window_size_samples = vad_options.window_size_samples | |
speech_pad_ms = vad_options.speech_pad_ms | |
if window_size_samples not in [512, 1024, 1536]: | |
warnings.warn( | |
"Unusual window_size_samples! Supported window_size_samples:\n" | |
" - [512, 1024, 1536] for 16000 sampling_rate" | |
) | |
sampling_rate = 16000 | |
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000 | |
speech_pad_samples = sampling_rate * speech_pad_ms / 1000 | |
max_speech_samples = ( | |
sampling_rate * max_speech_duration_s | |
- window_size_samples | |
- 2 * speech_pad_samples | |
) | |
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000 | |
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000 | |
audio_length_samples = len(audio) | |
model = get_vad_model() | |
state = model.get_initial_state(batch_size=1) | |
speech_probs = [] | |
for current_start_sample in range(0, audio_length_samples, window_size_samples): | |
chunk = audio[current_start_sample : current_start_sample + window_size_samples] | |
if len(chunk) < window_size_samples: | |
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk)))) | |
speech_prob, state = model(chunk, state, sampling_rate) | |
speech_probs.append(speech_prob) | |
triggered = False | |
speeches = [] | |
current_speech = {} | |
neg_threshold = threshold - 0.15 | |
# to save potential segment end (and tolerate some silence) | |
temp_end = 0 | |
# to save potential segment limits in case of maximum segment size reached | |
prev_end = next_start = 0 | |
for i, speech_prob in enumerate(speech_probs): | |
if (speech_prob >= threshold) and temp_end: | |
temp_end = 0 | |
if next_start < prev_end: | |
next_start = window_size_samples * i | |
if (speech_prob >= threshold) and not triggered: | |
triggered = True | |
current_speech["start"] = window_size_samples * i | |
continue | |
if ( | |
triggered | |
and (window_size_samples * i) - current_speech["start"] > max_speech_samples | |
): | |
if prev_end: | |
current_speech["end"] = prev_end | |
speeches.append(current_speech) | |
current_speech = {} | |
# previously reached silence (< neg_thres) and is still not speech (< thres) | |
if next_start < prev_end: | |
triggered = False | |
else: | |
current_speech["start"] = next_start | |
prev_end = next_start = temp_end = 0 | |
else: | |
current_speech["end"] = window_size_samples * i | |
speeches.append(current_speech) | |
current_speech = {} | |
prev_end = next_start = temp_end = 0 | |
triggered = False | |
continue | |
if (speech_prob < neg_threshold) and triggered: | |
if not temp_end: | |
temp_end = window_size_samples * i | |
# condition to avoid cutting in very short silence | |
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech: | |
prev_end = temp_end | |
if (window_size_samples * i) - temp_end < min_silence_samples: | |
continue | |
else: | |
current_speech["end"] = temp_end | |
if ( | |
current_speech["end"] - current_speech["start"] | |
) > min_speech_samples: | |
speeches.append(current_speech) | |
current_speech = {} | |
prev_end = next_start = temp_end = 0 | |
triggered = False | |
continue | |
if ( | |
current_speech | |
and (audio_length_samples - current_speech["start"]) > min_speech_samples | |
): | |
current_speech["end"] = audio_length_samples | |
speeches.append(current_speech) | |
for i, speech in enumerate(speeches): | |
if i == 0: | |
speech["start"] = int(max(0, speech["start"] - speech_pad_samples)) | |
if i != len(speeches) - 1: | |
silence_duration = speeches[i + 1]["start"] - speech["end"] | |
if silence_duration < 2 * speech_pad_samples: | |
speech["end"] += int(silence_duration // 2) | |
speeches[i + 1]["start"] = int( | |
max(0, speeches[i + 1]["start"] - silence_duration // 2) | |
) | |
else: | |
speech["end"] = int( | |
min(audio_length_samples, speech["end"] + speech_pad_samples) | |
) | |
speeches[i + 1]["start"] = int( | |
max(0, speeches[i + 1]["start"] - speech_pad_samples) | |
) | |
else: | |
speech["end"] = int( | |
min(audio_length_samples, speech["end"] + speech_pad_samples) | |
) | |
return speeches | |
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray: | |
"""Collects and concatenates audio chunks.""" | |
if not chunks: | |
return np.array([], dtype=np.float32) | |
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks]) | |
class SpeechTimestampsMap: | |
"""Helper class to restore original speech timestamps.""" | |
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2): | |
self.sampling_rate = sampling_rate | |
self.time_precision = time_precision | |
self.chunk_end_sample = [] | |
self.total_silence_before = [] | |
previous_end = 0 | |
silent_samples = 0 | |
for chunk in chunks: | |
silent_samples += chunk["start"] - previous_end | |
previous_end = chunk["end"] | |
self.chunk_end_sample.append(chunk["end"] - silent_samples) | |
self.total_silence_before.append(silent_samples / sampling_rate) | |
def get_original_time( | |
self, | |
time: float, | |
chunk_index: Optional[int] = None, | |
) -> float: | |
if chunk_index is None: | |
chunk_index = self.get_chunk_index(time) | |
total_silence_before = self.total_silence_before[chunk_index] | |
return round(total_silence_before + time, self.time_precision) | |
def get_chunk_index(self, time: float) -> int: | |
sample = int(time * self.sampling_rate) | |
return min( | |
bisect.bisect(self.chunk_end_sample, sample), | |
len(self.chunk_end_sample) - 1, | |
) | |
def get_vad_model(): | |
"""Returns the VAD model instance.""" | |
asset_dir = os.path.join(os.path.dirname(__file__), "assets") | |
path = os.path.join(asset_dir, "silero_vad.onnx") | |
return SileroVADModel(path) | |
class SileroVADModel: | |
def __init__(self, path): | |
try: | |
import onnxruntime | |
except ImportError as e: | |
raise RuntimeError( | |
"Applying the VAD filter requires the onnxruntime package" | |
) from e | |
opts = onnxruntime.SessionOptions() | |
opts.inter_op_num_threads = 1 | |
opts.intra_op_num_threads = 1 | |
opts.log_severity_level = 4 | |
self.session = onnxruntime.InferenceSession( | |
path, | |
providers=["CPUExecutionProvider"], | |
sess_options=opts, | |
) | |
def get_initial_state(self, batch_size: int): | |
h = np.zeros((2, batch_size, 64), dtype=np.float32) | |
c = np.zeros((2, batch_size, 64), dtype=np.float32) | |
return h, c | |
def __call__(self, x, state, sr: int): | |
if len(x.shape) == 1: | |
x = np.expand_dims(x, 0) | |
if len(x.shape) > 2: | |
raise ValueError( | |
f"Too many dimensions for input audio chunk {len(x.shape)}" | |
) | |
if sr / x.shape[1] > 31.25: | |
raise ValueError("Input audio chunk is too short") | |
h, c = state | |
ort_inputs = { | |
"input": x, | |
"h": h, | |
"c": c, | |
"sr": np.array(sr, dtype="int64"), | |
} | |
out, h, c = self.session.run(None, ort_inputs) | |
state = (h, c) | |
return out, state | |