Spaces:
Running
on
Zero
Running
on
Zero
Helw150
commited on
Commit
·
b164fe5
1
Parent(s):
94540c3
Move VAD to On-Device
Browse files- app.py +73 -95
- utils/assets/silero_vad.onnx +0 -3
- utils/snac_utils.py +0 -146
- utils/vad.py +0 -290
app.py
CHANGED
@@ -12,10 +12,6 @@ import xxhash
|
|
12 |
from datasets import Audio
|
13 |
from transformers import AutoModel
|
14 |
import io
|
15 |
-
from pydub import AudioSegment
|
16 |
-
import tempfile
|
17 |
-
|
18 |
-
from utils.vad import VadOptions, collect_chunks, get_speech_timestamps
|
19 |
|
20 |
if gr.NO_RELOAD:
|
21 |
diva_model = AutoModel.from_pretrained(
|
@@ -25,7 +21,7 @@ if gr.NO_RELOAD:
|
|
25 |
resampler = Audio(sampling_rate=16_000)
|
26 |
|
27 |
|
28 |
-
@spaces.GPU(duration=20)
|
29 |
@torch.no_grad
|
30 |
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
31 |
sr, y = audio_input
|
@@ -37,7 +33,11 @@ def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
|
37 |
)
|
38 |
yield from diva_model.generate_stream(
|
39 |
a["array"],
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
do_sample=do_sample,
|
42 |
max_new_tokens=256,
|
43 |
init_outputs=prev_outs,
|
@@ -45,96 +45,24 @@ def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
|
45 |
)
|
46 |
|
47 |
|
48 |
-
def run_vad(ori_audio, sr, duration):
|
49 |
-
_st = time.time()
|
50 |
-
try:
|
51 |
-
audio = ori_audio
|
52 |
-
if duration < 1:
|
53 |
-
return -1, ori_audio, round(time.time() - _st, 4)
|
54 |
-
audio = audio.astype(np.float32) / 32768.0
|
55 |
-
sampling_rate = 16000
|
56 |
-
if sr != sampling_rate:
|
57 |
-
audio = librosa.resample(audio, orig_sr=sr, target_sr=sampling_rate)
|
58 |
-
|
59 |
-
vad_parameters = {}
|
60 |
-
vad_parameters = VadOptions(**vad_parameters)
|
61 |
-
speech_chunks = get_speech_timestamps(audio, vad_parameters)
|
62 |
-
audio = collect_chunks(audio, speech_chunks)
|
63 |
-
duration_after_vad = audio.shape[0] / sampling_rate
|
64 |
-
|
65 |
-
if sr != sampling_rate:
|
66 |
-
# resample to original sampling rate
|
67 |
-
vad_audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=sr)
|
68 |
-
else:
|
69 |
-
vad_audio = audio
|
70 |
-
vad_audio = np.round(vad_audio * 32768.0).astype(np.int16)
|
71 |
-
vad_audio_bytes = vad_audio.tobytes()
|
72 |
-
|
73 |
-
return duration_after_vad, vad_audio_bytes, round(time.time() - _st, 4)
|
74 |
-
except Exception as e:
|
75 |
-
msg = f"[asr vad error] audio_len: {len(ori_audio)/(sr*2):.3f} s, trace: {traceback.format_exc()}"
|
76 |
-
print(msg)
|
77 |
-
return -1, ori_audio, round(time.time() - _st, 4)
|
78 |
-
|
79 |
-
|
80 |
-
def warm_up():
|
81 |
-
frames = np.ones(2048) # 1024 frames of 2 bytes each
|
82 |
-
dur, frames, tcost = run_vad(frames, 16000, 10)
|
83 |
-
print(f"warm up done, time_cost: {tcost:.3f} s")
|
84 |
-
|
85 |
-
|
86 |
-
warm_up()
|
87 |
-
|
88 |
-
|
89 |
@dataclass
|
90 |
class AppState:
|
91 |
stream: np.ndarray | None = None
|
92 |
sampling_rate: int = 0
|
93 |
-
pause_detected: bool = False
|
94 |
-
started_talking: bool = False
|
95 |
stopped: bool = False
|
96 |
conversation: list = field(default_factory=list)
|
97 |
model_outs: any = None
|
98 |
|
99 |
|
100 |
-
def determine_pause(audio: np.ndarray, sampling_rate: int, state: AppState) -> bool:
|
101 |
-
"""Take in the stream, determine if a pause happened"""
|
102 |
-
|
103 |
-
temp_audio = audio[-2 * sampling_rate :]
|
104 |
-
|
105 |
-
duration = len(audio) / sampling_rate
|
106 |
-
dur_vad, _, time_vad = run_vad(temp_audio, sampling_rate, duration)
|
107 |
-
|
108 |
-
if dur_vad > 0.25 and not state.started_talking:
|
109 |
-
print("started talking")
|
110 |
-
state.started_talking = True
|
111 |
-
return False
|
112 |
-
|
113 |
-
print(f"duration_after_vad: {dur_vad:.3f} s, time_vad: {time_vad:.3f} s")
|
114 |
-
|
115 |
-
return dur_vad < 0.5
|
116 |
-
|
117 |
-
|
118 |
def process_audio(audio: tuple, state: AppState):
|
119 |
-
|
120 |
-
state.stream = audio[1]
|
121 |
-
state.sampling_rate = audio[0]
|
122 |
-
elif audio is not None and audio[1] is not None:
|
123 |
-
state.stream = np.concatenate((state.stream, audio[1]))
|
124 |
-
else:
|
125 |
-
return None, state
|
126 |
|
127 |
-
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
|
128 |
-
state.pause_detected = pause_detected
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
return None, state
|
133 |
-
|
134 |
-
|
135 |
-
def response(state: AppState):
|
136 |
-
if not state.pause_detected and not state.started_talking:
|
137 |
return AppState()
|
|
|
|
|
138 |
|
139 |
file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav"
|
140 |
|
@@ -159,8 +87,7 @@ def response(state: AppState):
|
|
159 |
|
160 |
|
161 |
def start_recording_user(state: AppState):
|
162 |
-
|
163 |
-
return gr.Audio(recording=True)
|
164 |
|
165 |
|
166 |
theme = gr.themes.Soft(
|
@@ -181,29 +108,80 @@ theme = gr.themes.Soft(
|
|
181 |
neutral_hue="stone",
|
182 |
)
|
183 |
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
with gr.Row():
|
186 |
-
input_audio = gr.Audio(
|
|
|
|
|
|
|
|
|
|
|
187 |
with gr.Row():
|
188 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
189 |
state = gr.State(value=AppState())
|
190 |
-
|
191 |
-
stream = input_audio.stream(
|
192 |
process_audio,
|
193 |
[input_audio, state],
|
194 |
[input_audio, state],
|
195 |
-
stream_every=0.25,
|
196 |
-
time_limit=10,
|
197 |
)
|
198 |
-
respond = input_audio.stop_recording(
|
199 |
-
|
|
|
|
|
|
|
|
|
200 |
|
201 |
-
cancel = gr.Button("
|
202 |
cancel.click(
|
203 |
lambda: (AppState(stopped=True), gr.Audio(recording=False)),
|
204 |
None,
|
205 |
[state, input_audio],
|
206 |
-
cancels=[respond,
|
207 |
)
|
208 |
|
209 |
if __name__ == "__main__":
|
|
|
12 |
from datasets import Audio
|
13 |
from transformers import AutoModel
|
14 |
import io
|
|
|
|
|
|
|
|
|
15 |
|
16 |
if gr.NO_RELOAD:
|
17 |
diva_model = AutoModel.from_pretrained(
|
|
|
21 |
resampler = Audio(sampling_rate=16_000)
|
22 |
|
23 |
|
24 |
+
@spaces.GPU(duration=20, progress=gr.Progress(track_tqdm=True))
|
25 |
@torch.no_grad
|
26 |
def diva_audio(audio_input, do_sample=False, temperature=0.001, prev_outs=None):
|
27 |
sr, y = audio_input
|
|
|
33 |
)
|
34 |
yield from diva_model.generate_stream(
|
35 |
a["array"],
|
36 |
+
(
|
37 |
+
"Your name is DiVA, which stands for Distilled Voice Assistant. You were trained with early-fusion training to merge OpenAI's Whisper and Meta AI's Llama 3 8B to provide end-to-end voice processing. You should give brief and helpful answers, in a conversational style. The user is talking to you with their voice and you are responding with text."
|
38 |
+
if prev_outs == None
|
39 |
+
else None
|
40 |
+
),
|
41 |
do_sample=do_sample,
|
42 |
max_new_tokens=256,
|
43 |
init_outputs=prev_outs,
|
|
|
45 |
)
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
@dataclass
|
49 |
class AppState:
|
50 |
stream: np.ndarray | None = None
|
51 |
sampling_rate: int = 0
|
|
|
|
|
52 |
stopped: bool = False
|
53 |
conversation: list = field(default_factory=list)
|
54 |
model_outs: any = None
|
55 |
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def process_audio(audio: tuple, state: AppState):
|
58 |
+
return audio, state
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
|
|
|
|
60 |
|
61 |
+
def response(state: AppState, audio: tuple):
|
62 |
+
if not audio:
|
|
|
|
|
|
|
|
|
|
|
63 |
return AppState()
|
64 |
+
state.stream = audio[1]
|
65 |
+
state.sampling_rate = audio[0]
|
66 |
|
67 |
file_name = f"/tmp/{xxhash.xxh32(bytes(state.stream)).hexdigest()}.wav"
|
68 |
|
|
|
87 |
|
88 |
|
89 |
def start_recording_user(state: AppState):
|
90 |
+
return None
|
|
|
91 |
|
92 |
|
93 |
theme = gr.themes.Soft(
|
|
|
108 |
neutral_hue="stone",
|
109 |
)
|
110 |
|
111 |
+
js = """
|
112 |
+
async function main() {
|
113 |
+
const script1 = document.createElement("script");
|
114 |
+
script1.src = "https://cdn.jsdelivr.net/npm/onnxruntime-web@1.14.0/dist/ort.js";
|
115 |
+
document.head.appendChild(script1)
|
116 |
+
const script2 = document.createElement("script");
|
117 |
+
script2.onload = async () => {
|
118 |
+
console.log("vad loaded") ;
|
119 |
+
var record = document.querySelector('.record-button');
|
120 |
+
record.textContent = "Just Start Talking!"
|
121 |
+
record.style = "width: 11vw"
|
122 |
+
const myvad = await vad.MicVAD.new({
|
123 |
+
onSpeechStart: () => {
|
124 |
+
var record = document.querySelector('.record-button');
|
125 |
+
if (record != null) {
|
126 |
+
console.log(record);
|
127 |
+
record.click();
|
128 |
+
}
|
129 |
+
},
|
130 |
+
onSpeechEnd: (audio) => {
|
131 |
+
var stop = document.querySelector('.stop-button');
|
132 |
+
if (stop != null) {
|
133 |
+
console.log(stop);
|
134 |
+
stop.click();
|
135 |
+
}
|
136 |
+
}
|
137 |
+
})
|
138 |
+
myvad.start()
|
139 |
+
}
|
140 |
+
script2.src = "https://cdn.jsdelivr.net/npm/@ricky0123/vad-web@0.0.7/dist/bundle.min.js";
|
141 |
+
script1.onload = () => {
|
142 |
+
console.log("onnx loaded")
|
143 |
+
document.head.appendChild(script2)
|
144 |
+
};
|
145 |
+
}
|
146 |
+
"""
|
147 |
+
|
148 |
+
js_reset = """
|
149 |
+
() => {
|
150 |
+
var record = document.querySelector('.record-button');
|
151 |
+
record.textContent = "Just Start Talking!"
|
152 |
+
record.style = "width: 11vw"
|
153 |
+
}
|
154 |
+
"""
|
155 |
+
|
156 |
+
with gr.Blocks(theme=theme, js=js) as demo:
|
157 |
with gr.Row():
|
158 |
+
input_audio = gr.Audio(
|
159 |
+
label="Input Audio",
|
160 |
+
sources=["microphone"],
|
161 |
+
type="numpy",
|
162 |
+
streaming=False,
|
163 |
+
)
|
164 |
with gr.Row():
|
165 |
chatbot = gr.Chatbot(label="Conversation", type="messages")
|
166 |
state = gr.State(value=AppState())
|
167 |
+
stream = input_audio.start_recording(
|
|
|
168 |
process_audio,
|
169 |
[input_audio, state],
|
170 |
[input_audio, state],
|
|
|
|
|
171 |
)
|
172 |
+
respond = input_audio.stop_recording(
|
173 |
+
response, [state, input_audio], [state, chatbot]
|
174 |
+
)
|
175 |
+
restart = respond.then(start_recording_user, [state], [input_audio]).then(
|
176 |
+
lambda: None, None, None, js=js_reset
|
177 |
+
)
|
178 |
|
179 |
+
cancel = gr.Button("Restart Conversation", variant="stop")
|
180 |
cancel.click(
|
181 |
lambda: (AppState(stopped=True), gr.Audio(recording=False)),
|
182 |
None,
|
183 |
[state, input_audio],
|
184 |
+
cancels=[respond, restart],
|
185 |
)
|
186 |
|
187 |
if __name__ == "__main__":
|
utils/assets/silero_vad.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:591f853590d11ddde2f2a54f9e7ccecb2533a8af7716330e8adfa6f3849787a9
|
3 |
-
size 1807524
|
|
|
|
|
|
|
|
utils/snac_utils.py
DELETED
@@ -1,146 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import time
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
|
6 |
-
class SnacConfig:
|
7 |
-
audio_vocab_size = 4096
|
8 |
-
padded_vocab_size = 4160
|
9 |
-
end_of_audio = 4097
|
10 |
-
|
11 |
-
|
12 |
-
snac_config = SnacConfig()
|
13 |
-
|
14 |
-
|
15 |
-
def get_time_str():
|
16 |
-
time_str = time.strftime("%Y%m%d_%H%M%S", time.localtime())
|
17 |
-
return time_str
|
18 |
-
|
19 |
-
|
20 |
-
def layershift(input_id, layer, stride=4160, shift=152000):
|
21 |
-
return input_id + shift + layer * stride
|
22 |
-
|
23 |
-
|
24 |
-
def generate_audio_data(snac_tokens, snacmodel, device=None):
|
25 |
-
audio = reconstruct_tensors(snac_tokens, device)
|
26 |
-
with torch.inference_mode():
|
27 |
-
audio_hat = snacmodel.decode(audio)
|
28 |
-
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
29 |
-
audio_data = audio_data.astype(np.int16)
|
30 |
-
audio_data = audio_data.tobytes()
|
31 |
-
return audio_data
|
32 |
-
|
33 |
-
|
34 |
-
def get_snac(list_output, index, nums_generate):
|
35 |
-
|
36 |
-
snac = []
|
37 |
-
start = index
|
38 |
-
for i in range(nums_generate):
|
39 |
-
snac.append("#")
|
40 |
-
for j in range(7):
|
41 |
-
snac.append(list_output[j][start - nums_generate - 5 + j + i])
|
42 |
-
return snac
|
43 |
-
|
44 |
-
|
45 |
-
def reconscruct_snac(output_list):
|
46 |
-
if len(output_list) == 8:
|
47 |
-
output_list = output_list[:-1]
|
48 |
-
output = []
|
49 |
-
for i in range(7):
|
50 |
-
output_list[i] = output_list[i][i + 1 :]
|
51 |
-
for i in range(len(output_list[-1])):
|
52 |
-
output.append("#")
|
53 |
-
for j in range(7):
|
54 |
-
output.append(output_list[j][i])
|
55 |
-
return output
|
56 |
-
|
57 |
-
|
58 |
-
def reconstruct_tensors(flattened_output, device=None):
|
59 |
-
"""Reconstructs the list of tensors from the flattened output."""
|
60 |
-
|
61 |
-
if device is None:
|
62 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
-
|
64 |
-
def count_elements_between_hashes(lst):
|
65 |
-
try:
|
66 |
-
# Find the index of the first '#'
|
67 |
-
first_index = lst.index("#")
|
68 |
-
# Find the index of the second '#' after the first
|
69 |
-
second_index = lst.index("#", first_index + 1)
|
70 |
-
# Count the elements between the two indices
|
71 |
-
return second_index - first_index - 1
|
72 |
-
except ValueError:
|
73 |
-
# Handle the case where there aren't enough '#' symbols
|
74 |
-
return "List does not contain two '#' symbols"
|
75 |
-
|
76 |
-
def remove_elements_before_hash(flattened_list):
|
77 |
-
try:
|
78 |
-
# Find the index of the first '#'
|
79 |
-
first_hash_index = flattened_list.index("#")
|
80 |
-
# Return the list starting from the first '#'
|
81 |
-
return flattened_list[first_hash_index:]
|
82 |
-
except ValueError:
|
83 |
-
# Handle the case where there is no '#'
|
84 |
-
return "List does not contain the symbol '#'"
|
85 |
-
|
86 |
-
def list_to_torch_tensor(tensor1):
|
87 |
-
# Convert the list to a torch tensor
|
88 |
-
tensor = torch.tensor(tensor1)
|
89 |
-
# Reshape the tensor to have size (1, n)
|
90 |
-
tensor = tensor.unsqueeze(0)
|
91 |
-
return tensor
|
92 |
-
|
93 |
-
flattened_output = remove_elements_before_hash(flattened_output)
|
94 |
-
codes = []
|
95 |
-
tensor1 = []
|
96 |
-
tensor2 = []
|
97 |
-
tensor3 = []
|
98 |
-
tensor4 = []
|
99 |
-
|
100 |
-
n_tensors = count_elements_between_hashes(flattened_output)
|
101 |
-
if n_tensors == 7:
|
102 |
-
for i in range(0, len(flattened_output), 8):
|
103 |
-
|
104 |
-
tensor1.append(flattened_output[i + 1])
|
105 |
-
tensor2.append(flattened_output[i + 2])
|
106 |
-
tensor3.append(flattened_output[i + 3])
|
107 |
-
tensor3.append(flattened_output[i + 4])
|
108 |
-
|
109 |
-
tensor2.append(flattened_output[i + 5])
|
110 |
-
tensor3.append(flattened_output[i + 6])
|
111 |
-
tensor3.append(flattened_output[i + 7])
|
112 |
-
codes = [
|
113 |
-
list_to_torch_tensor(tensor1).to(device),
|
114 |
-
list_to_torch_tensor(tensor2).to(device),
|
115 |
-
list_to_torch_tensor(tensor3).to(device),
|
116 |
-
]
|
117 |
-
|
118 |
-
if n_tensors == 15:
|
119 |
-
for i in range(0, len(flattened_output), 16):
|
120 |
-
|
121 |
-
tensor1.append(flattened_output[i + 1])
|
122 |
-
tensor2.append(flattened_output[i + 2])
|
123 |
-
tensor3.append(flattened_output[i + 3])
|
124 |
-
tensor4.append(flattened_output[i + 4])
|
125 |
-
tensor4.append(flattened_output[i + 5])
|
126 |
-
tensor3.append(flattened_output[i + 6])
|
127 |
-
tensor4.append(flattened_output[i + 7])
|
128 |
-
tensor4.append(flattened_output[i + 8])
|
129 |
-
|
130 |
-
tensor2.append(flattened_output[i + 9])
|
131 |
-
tensor3.append(flattened_output[i + 10])
|
132 |
-
tensor4.append(flattened_output[i + 11])
|
133 |
-
tensor4.append(flattened_output[i + 12])
|
134 |
-
tensor3.append(flattened_output[i + 13])
|
135 |
-
tensor4.append(flattened_output[i + 14])
|
136 |
-
tensor4.append(flattened_output[i + 15])
|
137 |
-
|
138 |
-
codes = [
|
139 |
-
list_to_torch_tensor(tensor1).to(device),
|
140 |
-
list_to_torch_tensor(tensor2).to(device),
|
141 |
-
list_to_torch_tensor(tensor3).to(device),
|
142 |
-
list_to_torch_tensor(tensor4).to(device),
|
143 |
-
]
|
144 |
-
|
145 |
-
return codes
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils/vad.py
DELETED
@@ -1,290 +0,0 @@
|
|
1 |
-
import bisect
|
2 |
-
import functools
|
3 |
-
import os
|
4 |
-
import warnings
|
5 |
-
|
6 |
-
from typing import List, NamedTuple, Optional
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
|
11 |
-
# The code below is adapted from https://github.com/snakers4/silero-vad.
|
12 |
-
class VadOptions(NamedTuple):
|
13 |
-
"""VAD options.
|
14 |
-
|
15 |
-
Attributes:
|
16 |
-
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
17 |
-
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
18 |
-
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
19 |
-
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
20 |
-
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
21 |
-
than max_speech_duration_s will be split at the timestamp of the last silence that
|
22 |
-
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
|
23 |
-
split aggressively just before max_speech_duration_s.
|
24 |
-
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
25 |
-
before separating it
|
26 |
-
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
|
27 |
-
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
28 |
-
Values other than these may affect model performance!!
|
29 |
-
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
30 |
-
"""
|
31 |
-
|
32 |
-
threshold: float = 0.5
|
33 |
-
min_speech_duration_ms: int = 250
|
34 |
-
max_speech_duration_s: float = float("inf")
|
35 |
-
min_silence_duration_ms: int = 2000
|
36 |
-
window_size_samples: int = 1024
|
37 |
-
speech_pad_ms: int = 400
|
38 |
-
|
39 |
-
|
40 |
-
def get_speech_timestamps(
|
41 |
-
audio: np.ndarray,
|
42 |
-
vad_options: Optional[VadOptions] = None,
|
43 |
-
**kwargs,
|
44 |
-
) -> List[dict]:
|
45 |
-
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
46 |
-
|
47 |
-
Args:
|
48 |
-
audio: One dimensional float array.
|
49 |
-
vad_options: Options for VAD processing.
|
50 |
-
kwargs: VAD options passed as keyword arguments for backward compatibility.
|
51 |
-
|
52 |
-
Returns:
|
53 |
-
List of dicts containing begin and end samples of each speech chunk.
|
54 |
-
"""
|
55 |
-
if vad_options is None:
|
56 |
-
vad_options = VadOptions(**kwargs)
|
57 |
-
|
58 |
-
threshold = vad_options.threshold
|
59 |
-
min_speech_duration_ms = vad_options.min_speech_duration_ms
|
60 |
-
max_speech_duration_s = vad_options.max_speech_duration_s
|
61 |
-
min_silence_duration_ms = vad_options.min_silence_duration_ms
|
62 |
-
window_size_samples = vad_options.window_size_samples
|
63 |
-
speech_pad_ms = vad_options.speech_pad_ms
|
64 |
-
|
65 |
-
if window_size_samples not in [512, 1024, 1536]:
|
66 |
-
warnings.warn(
|
67 |
-
"Unusual window_size_samples! Supported window_size_samples:\n"
|
68 |
-
" - [512, 1024, 1536] for 16000 sampling_rate"
|
69 |
-
)
|
70 |
-
|
71 |
-
sampling_rate = 16000
|
72 |
-
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
73 |
-
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
74 |
-
max_speech_samples = (
|
75 |
-
sampling_rate * max_speech_duration_s
|
76 |
-
- window_size_samples
|
77 |
-
- 2 * speech_pad_samples
|
78 |
-
)
|
79 |
-
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
80 |
-
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
81 |
-
|
82 |
-
audio_length_samples = len(audio)
|
83 |
-
|
84 |
-
model = get_vad_model()
|
85 |
-
state = model.get_initial_state(batch_size=1)
|
86 |
-
|
87 |
-
speech_probs = []
|
88 |
-
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
89 |
-
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
|
90 |
-
if len(chunk) < window_size_samples:
|
91 |
-
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
92 |
-
speech_prob, state = model(chunk, state, sampling_rate)
|
93 |
-
speech_probs.append(speech_prob)
|
94 |
-
|
95 |
-
triggered = False
|
96 |
-
speeches = []
|
97 |
-
current_speech = {}
|
98 |
-
neg_threshold = threshold - 0.15
|
99 |
-
|
100 |
-
# to save potential segment end (and tolerate some silence)
|
101 |
-
temp_end = 0
|
102 |
-
# to save potential segment limits in case of maximum segment size reached
|
103 |
-
prev_end = next_start = 0
|
104 |
-
|
105 |
-
for i, speech_prob in enumerate(speech_probs):
|
106 |
-
if (speech_prob >= threshold) and temp_end:
|
107 |
-
temp_end = 0
|
108 |
-
if next_start < prev_end:
|
109 |
-
next_start = window_size_samples * i
|
110 |
-
|
111 |
-
if (speech_prob >= threshold) and not triggered:
|
112 |
-
triggered = True
|
113 |
-
current_speech["start"] = window_size_samples * i
|
114 |
-
continue
|
115 |
-
|
116 |
-
if (
|
117 |
-
triggered
|
118 |
-
and (window_size_samples * i) - current_speech["start"] > max_speech_samples
|
119 |
-
):
|
120 |
-
if prev_end:
|
121 |
-
current_speech["end"] = prev_end
|
122 |
-
speeches.append(current_speech)
|
123 |
-
current_speech = {}
|
124 |
-
# previously reached silence (< neg_thres) and is still not speech (< thres)
|
125 |
-
if next_start < prev_end:
|
126 |
-
triggered = False
|
127 |
-
else:
|
128 |
-
current_speech["start"] = next_start
|
129 |
-
prev_end = next_start = temp_end = 0
|
130 |
-
else:
|
131 |
-
current_speech["end"] = window_size_samples * i
|
132 |
-
speeches.append(current_speech)
|
133 |
-
current_speech = {}
|
134 |
-
prev_end = next_start = temp_end = 0
|
135 |
-
triggered = False
|
136 |
-
continue
|
137 |
-
|
138 |
-
if (speech_prob < neg_threshold) and triggered:
|
139 |
-
if not temp_end:
|
140 |
-
temp_end = window_size_samples * i
|
141 |
-
# condition to avoid cutting in very short silence
|
142 |
-
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech:
|
143 |
-
prev_end = temp_end
|
144 |
-
if (window_size_samples * i) - temp_end < min_silence_samples:
|
145 |
-
continue
|
146 |
-
else:
|
147 |
-
current_speech["end"] = temp_end
|
148 |
-
if (
|
149 |
-
current_speech["end"] - current_speech["start"]
|
150 |
-
) > min_speech_samples:
|
151 |
-
speeches.append(current_speech)
|
152 |
-
current_speech = {}
|
153 |
-
prev_end = next_start = temp_end = 0
|
154 |
-
triggered = False
|
155 |
-
continue
|
156 |
-
|
157 |
-
if (
|
158 |
-
current_speech
|
159 |
-
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
160 |
-
):
|
161 |
-
current_speech["end"] = audio_length_samples
|
162 |
-
speeches.append(current_speech)
|
163 |
-
|
164 |
-
for i, speech in enumerate(speeches):
|
165 |
-
if i == 0:
|
166 |
-
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
167 |
-
if i != len(speeches) - 1:
|
168 |
-
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
169 |
-
if silence_duration < 2 * speech_pad_samples:
|
170 |
-
speech["end"] += int(silence_duration // 2)
|
171 |
-
speeches[i + 1]["start"] = int(
|
172 |
-
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
173 |
-
)
|
174 |
-
else:
|
175 |
-
speech["end"] = int(
|
176 |
-
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
177 |
-
)
|
178 |
-
speeches[i + 1]["start"] = int(
|
179 |
-
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
180 |
-
)
|
181 |
-
else:
|
182 |
-
speech["end"] = int(
|
183 |
-
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
184 |
-
)
|
185 |
-
|
186 |
-
return speeches
|
187 |
-
|
188 |
-
|
189 |
-
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
190 |
-
"""Collects and concatenates audio chunks."""
|
191 |
-
if not chunks:
|
192 |
-
return np.array([], dtype=np.float32)
|
193 |
-
|
194 |
-
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
195 |
-
|
196 |
-
|
197 |
-
class SpeechTimestampsMap:
|
198 |
-
"""Helper class to restore original speech timestamps."""
|
199 |
-
|
200 |
-
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2):
|
201 |
-
self.sampling_rate = sampling_rate
|
202 |
-
self.time_precision = time_precision
|
203 |
-
self.chunk_end_sample = []
|
204 |
-
self.total_silence_before = []
|
205 |
-
|
206 |
-
previous_end = 0
|
207 |
-
silent_samples = 0
|
208 |
-
|
209 |
-
for chunk in chunks:
|
210 |
-
silent_samples += chunk["start"] - previous_end
|
211 |
-
previous_end = chunk["end"]
|
212 |
-
|
213 |
-
self.chunk_end_sample.append(chunk["end"] - silent_samples)
|
214 |
-
self.total_silence_before.append(silent_samples / sampling_rate)
|
215 |
-
|
216 |
-
def get_original_time(
|
217 |
-
self,
|
218 |
-
time: float,
|
219 |
-
chunk_index: Optional[int] = None,
|
220 |
-
) -> float:
|
221 |
-
if chunk_index is None:
|
222 |
-
chunk_index = self.get_chunk_index(time)
|
223 |
-
|
224 |
-
total_silence_before = self.total_silence_before[chunk_index]
|
225 |
-
return round(total_silence_before + time, self.time_precision)
|
226 |
-
|
227 |
-
def get_chunk_index(self, time: float) -> int:
|
228 |
-
sample = int(time * self.sampling_rate)
|
229 |
-
return min(
|
230 |
-
bisect.bisect(self.chunk_end_sample, sample),
|
231 |
-
len(self.chunk_end_sample) - 1,
|
232 |
-
)
|
233 |
-
|
234 |
-
|
235 |
-
@functools.lru_cache
|
236 |
-
def get_vad_model():
|
237 |
-
"""Returns the VAD model instance."""
|
238 |
-
asset_dir = os.path.join(os.path.dirname(__file__), "assets")
|
239 |
-
path = os.path.join(asset_dir, "silero_vad.onnx")
|
240 |
-
return SileroVADModel(path)
|
241 |
-
|
242 |
-
|
243 |
-
class SileroVADModel:
|
244 |
-
def __init__(self, path):
|
245 |
-
try:
|
246 |
-
import onnxruntime
|
247 |
-
except ImportError as e:
|
248 |
-
raise RuntimeError(
|
249 |
-
"Applying the VAD filter requires the onnxruntime package"
|
250 |
-
) from e
|
251 |
-
|
252 |
-
opts = onnxruntime.SessionOptions()
|
253 |
-
opts.inter_op_num_threads = 1
|
254 |
-
opts.intra_op_num_threads = 1
|
255 |
-
opts.log_severity_level = 4
|
256 |
-
|
257 |
-
self.session = onnxruntime.InferenceSession(
|
258 |
-
path,
|
259 |
-
providers=["CPUExecutionProvider"],
|
260 |
-
sess_options=opts,
|
261 |
-
)
|
262 |
-
|
263 |
-
def get_initial_state(self, batch_size: int):
|
264 |
-
h = np.zeros((2, batch_size, 64), dtype=np.float32)
|
265 |
-
c = np.zeros((2, batch_size, 64), dtype=np.float32)
|
266 |
-
return h, c
|
267 |
-
|
268 |
-
def __call__(self, x, state, sr: int):
|
269 |
-
if len(x.shape) == 1:
|
270 |
-
x = np.expand_dims(x, 0)
|
271 |
-
if len(x.shape) > 2:
|
272 |
-
raise ValueError(
|
273 |
-
f"Too many dimensions for input audio chunk {len(x.shape)}"
|
274 |
-
)
|
275 |
-
if sr / x.shape[1] > 31.25:
|
276 |
-
raise ValueError("Input audio chunk is too short")
|
277 |
-
|
278 |
-
h, c = state
|
279 |
-
|
280 |
-
ort_inputs = {
|
281 |
-
"input": x,
|
282 |
-
"h": h,
|
283 |
-
"c": c,
|
284 |
-
"sr": np.array(sr, dtype="int64"),
|
285 |
-
}
|
286 |
-
|
287 |
-
out, h, c = self.session.run(None, ort_inputs)
|
288 |
-
state = (h, c)
|
289 |
-
|
290 |
-
return out, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|