diva-audio / app.py
Helw150
Typo
172efb5
raw
history blame
5.57 kB
import copy
import os
import random
import sys
import xxhash
import gradio as gr
import librosa
import numpy as np
import soundfile as sf
import torch
import torch.nn.functional as F
from accelerate import infer_auto_device_map
from datasets import Audio
from safetensors.torch import load, load_model
import spaces
from torch import nn
from transformers import (
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
WhisperForConditionalGeneration,
AutoProcessor,
AutoModel,
)
from transformers.generation import GenerationConfig
anonymous = False
diva_model = AutoModel.from_pretrained(
"WillHeld/DiVA-llama-3-v0-8b", trust_remote_code=True
)
resampler = Audio(sampling_rate=16_000)
@spaces.GPU
@torch.no_grad
def diva_audio(audio_input, do_sample=False, temperature=0.001):
sr, y = audio_input
x = xxhash.xxh32(bytes(y)).hexdigest()
y = y.astype(np.float32)
y /= np.max(np.abs(y))
a = resampler.decode_example(
resampler.encode_example({"array": y, "sampling_rate": sr})
)
yield from diva_model.generate_stream(
a["array"], None, do_sample=do_sample, max_new_tokens=256
)
def transcribe_wrapper(audio_input, state, model_order):
spinner = "◒"
d_resp = gr.Textbox(
value="♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪loading♫♪.ılılıll|̲̅̅●̲̅̅|̲̅̅=̲̅̅|̲̅̅●̲̅̅|llılılı.♫♪♫♪",
visible=True,
label=model_names[0] if not anonymous else f"Model {order}",
)
yield (
gr.Button(
value="Loading Weights onto ZeroGPU...",
interactive=False,
variant="primary",
),
d_resp,
state,
)
yield from transcribe(audio_input, state, model_order)
@spaces.GPU
def transcribe(audio_input, state, model_order):
if audio_input == None:
return (
"Click to run inference!",
"",
state,
)
def gen_from_diva():
diva_resp = diva_audio(audio_input)
for resp in diva_resp:
d_resp = gr.Textbox(
value=resp,
visible=True,
label=model_names[0] if not anonymous else f"Model {order}",
)
yield d_resp
spinner_id = 0
spinners = ["◐ ", "◓ ", "◑", "◒"]
for response in gen_from_diva():
spinner = spinners[spinner_id]
spinner_id = (spinner_id + 1) % 4
yield (
gr.Button(
value=spinner + " Generating Responses " + spinner,
interactive=False,
variant="primary",
),
response,
state,
)
yield (
gr.Button(value="Click to run inference!", interactive=True, variant="primary"),
response,
state,
)
def on_page_load(state, model_order):
if state == 0:
gr.Info(
"Record something you'd say to an AI Assistant! Think about what you usually use Siri, Google Assistant, or ChatGPT for."
)
state = 1
if anonymous:
random.shuffle(model_order)
return state, model_order
def recording_complete(state):
if state == 1:
gr.Info(
"Once you submit your recording, DiVA will stream back a response! This might take a second as ZeroGPU needs to load model weights into vRAM!."
)
state = 2
return (
gr.Button(value="Click to run inference!", interactive=True, variant="primary"),
state,
)
def clear_factory(button_id):
def clear(audio_input, model_order):
return (
model_order,
gr.Button(
value="Record Audio to Submit!",
interactive=False,
),
None,
None,
)
return clear
theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c100="#82000019",
c200="#82000033",
c300="#8200004c",
c400="#82000066",
c50="#8200007f",
c500="#8200007f",
c600="#82000099",
c700="#820000b2",
c800="#820000cc",
c900="#820000e5",
c950="#820000f2",
),
secondary_hue="rose",
neutral_hue="stone",
)
model_names = ["DiVA Llama 3 8B"]
model_shorthand = ["diva"]
with gr.Blocks(theme=theme) as demo:
state = gr.State(0)
model_order = gr.State([0, 1])
with gr.Row():
audio_input = gr.Audio(
sources=["microphone"], streaming=False, label="Audio Input"
)
with gr.Row():
btn = gr.Button(value="Record Audio to Submit!", interactive=False)
with gr.Row():
out1 = gr.Textbox(visible=False)
audio_input.stop_recording(
recording_complete,
[state],
[btn, state],
)
audio_input.start_recording(
lambda: gr.Button(
value="Uploading Audio to Cloud", interactive=False, variant="primary"
),
None,
btn,
)
btn.click(
fn=transcribe_wrapper,
inputs=[audio_input, state, model_order],
outputs=[btn, out1, state],
)
audio_input.clear(
clear_factory(None),
[audio_input, model_order],
[model_order, btn, audio_input, out1],
)
demo.load(
fn=on_page_load, inputs=[state, model_order], outputs=[state, model_order]
)
demo.launch(share=True)